Стол находок утерянных чисел
Шрифт:
И вдруг он вскочил, сорвал с себя накладную бороду вместе с шапочкой и объявил, что весёлые математики по-прежнему веселы, молоды и юбилей собираются отпраздновать соответствующим образом. Без юбилейного елея. Без юбилейной скуки. Разнообразно, весело, содержательно. Для начала все приглашаются в парк, на торжественный запуск юбилейных змеев.
Змеи, привязанные к колышкам на большой поляне, гарцевали на месте, как застоявшиеся сказочные скакуны. Их длинные бахромчатые гривы так и стлались по ветру. Да они и впрямь были сказочными, эти на диво сработанные многоугольники!
На одном, квадратном, обклеенном золотой бумагой, выделялась надпись: «4=22». Другой, восьмиугольный, отливающий серебром, обозначался иначе: «8=23». Третий змей, обтянутый алым шёлком, — невиданное
Сердце у меня ёкнуло от радостного предчувствия. Эти многоугольники и эти числа имели прямое отношение к моей статье — той самой, что напечатали в журнале «Энэмские математические новости». И стало быть, речь пойдёт о совершенных числах.
Я не ошибся. Перед запуском в небольшой вступительной речи президент «Весёлых математиков» так прямо и сказал.
— Дорогие друзья, — начал он. — Темой нашего юбилейного заседания избраны совершенные числа. И это неудивительно. Для юбилейной программы всегда отбирают самое лучшее. А что может быть лучше совершенства? Слово для первого сообщения предоставляется этим многоугольникам… — президент широким жестом указал в сторону змеев. — Но так как они изъясняются только на языке чисел и линий, придётся мне выступить в роли переводчика. Недавно в журнале «Энэмские математические новости» напечатана статья о связи совершенных чисел с геометрией. (Тут сердце у меня снова ёкнуло и заколотилось как бешеное!) Автор её подметил, а также математически доказал вот что: число сторон многоугольника в сумме с числом его диагоналей даёт число совершенное. Но происходит это лишь в том случае, если число сторон на единицу меньше простого числа и если оно в то же время равно двойке, возведённой в степень простого числа. Именно это свойство наглядно демонстрируют наши уважаемые докладчики. Первый из них — квадрат, фигура четырёхсторонняя. Совершенно очевидно, что 4 на единицу больше простого числа 3. Кроме того, 4 — это вторая степень числа 2. И показатель степени 2 — число простое. Выходит, сумма сторон квадрата и его диагоналей должна быть числом совершенным. Так оно и есть: 4+2=6. А 6 — число совершенное. То же можно проверить на двух других многоугольниках. У одного из них 8 сторон и 20 диагоналей, что в сумме даёт совершенное число 28. Исследовав число сторон 8, убедимся, что оно отвечает непременному условию, так как на единицу больше простого числа 7. Кроме того, 8 — это 2 в третьей степени, а показатель степени 3 — число простое. И наконец, то же подтверждает сверхсовершенный тридцатидвухугольный змей. Число его сторон на единицу больше простого числа 31. Но несмотря на то что 32 есть 2 в степени простого числа 5 (25=32), построить такой змей очень и очень непросто. Ведь у него не только 32 стороны, но и 464 диагонали! («У-у-у!» — выдохнули зрители.) И в сумме это составляет совершенное число 496… Говорят, где простота, там и совершенство, — продолжал президент. — Если кто-нибудь в этом сомневается, пусть поглядит на нашего тридцатидвухугольного змея. Сейчас он поднимется в воздух и покажет, на что способен.
И действительно, через минуту-другую над поляной взмыли три чудо-змея, и каждый из них по очереди исполнил свой юбилейный номер. Квадрат описал четыре медленных круга, восьмиугольник — восемь более быстрых, а тридцатидвухугольник сделал тридцать два головокружительных вращения, и Главный терятель сказал, что зто было прямо как в балете: ровно 32 фуэте!
Стоит ли говорить, как я был счастлив? Тем сильнее я удивился, посмотрев на девочку. Она выглядела такой сердитой!
— В чём дело? — спросил я. — Тебе не понравились эти чудесные многоугольники?
Но она сказала, что многоугольники ни при чём. Президент — вот кто ей не понравился. Ведь он даже не назвал моего имени! А кабы не я, весёлым математикам до такого открытия нипочём не додуматься…
— Не забывай, что я и сам из весёлых математиков! — напомнил я.
— Тем более, — упрямо возразила она. — Тем более!
К тому времени мы уже снова оказались в здании и успели усесться на свои места. И тут президент доказал, что не так плох, как о нём думают. Он не только назвал моё имя, но во всеуслышание объявил героем нынешнего воздушного представления.
О юбилейном приглашении я слышал впервые. Вероятно, оно преспокойно лежало у меня дома, где я почти не бываю, потому что всё моё время принадлежит Столу находок. Что же до приглашения подняться на кафедру… Пожалуй, из всех приятных неожиданностей, обрушившихся на меня в тот день, эта была самая неприятная. С детства не люблю публичных выступлений. Нет, вообще-то я за словом в карман не полезу! Но стоит мне очутиться перед большой аудиторией, как я становлюсь другим человеком. И этот другой человек либо бормочет что-то невразумительное, либо, не рассчитав силы голоса, выпуливает слова так громко, что слушатели шарахаются.
К счастью, на сей раз ни того, ни другого не случилось. Почему? Да потому что сначала мне вообще говорить не пришлось. Только раскланиваться. А когда весёлые математики поутихли, я уже попривык. И заговорил не о совершенных числах, а о пропавшем билете, об операции «Пуся», об ассоциациях. И о том, разумеется, что пришёл сюда не один, а с друзьями.
— Друзья наших друзей — наши друзья, — сказал президент, но тут же осторожно поинтересовался: — И много их у вас?
— Вообще-то много, — сказал я, — но здесь только двое… Виноват, двое с половиной…
Все засмеялись, а президент шутливо заметил, что веселого математика за версту видно. Но я стал убеждать его, что ничуть не шучу, и в доказательство пригласил на сцену участников нашей сыскной группы.
— Двое друзей налицо, — подтвердил президент, пожав руки Главному терятелю и девочке. — Но где же обещанная половина?
Половина ждать себя не заставила. Послышалось звонкое Пусино «тяв-тяв», и рядом со мной на кафедре возникла наша дорогая, наша несравненная Главная ищейка.
Я давно заметил: Пуся очень любит неожиданные эффекты. Недаром он собирается выступать в цирке! В тот раз эффект превзошёл все его ожидания. Весёлые математики, нынешние и бывшие, повскакали со своих мест, окружили щенка и стали выражать ему свои симпатии так бурно, что президент вынужден был призвать их к порядку.
— Ваш «полдруга» стоит целого, — сострил он, обращаясь ко мне, — и всё же… Какое отношение имеет к весёлым математикам этот славный малыш?
— Самое прямое, — ответила за меня девочка. — Во-первых, он весёлый, во-вторых — математик. Сомневаетесь? — обиделась она, когда в зале недоверчиво зашептались. — Так убедитесь сами!
И все действительно убедились, потому что на девочкины вопросы Пуся отвечал безупречно. Сначала он возвёл в квадрат двойку, потом извлёк корень квадратный из шестнадцати, потом… Уж и не помню, что потом: шум стоял невообразимый. Куда там пресловутому «Тарараму»!
Вспоминая тот день, мы с Главным терятелем всегда говорим, что в роли дрессировщицы девочка впервые выступила именно на юбилее «Весёлых математиков». Тогда же мы услышали от неё песенку, которой она теперь начинает свои выступления в цирке.
Представить друга моегоСпешу, как полагается.Он знает счёт, и оттогоС ним тоже все считаются.Он всех учёней меж собак,Но суть не в том, однако.Люблю я друга просто так —Ведь это же собака!Собака знает не всегдаТаблицу умножения,Но чуть с хозяином беда —Она знаток в делении:Разделит трудности с тобой,Пойдёт в дозор, в атаку,С врагом, не дрогнув, вступит в бойНадёжный друг — собака!Особый у собаки счёт:В добро и правду веруя,Она всё взвесит, всё учтёт,Своей проверит мерою.Не лезь к ней, ябеда и трус,Хвастун и задавака…Собака, я тобой горжусь!Да здравствует собака!