Стол находок утерянных чисел
Шрифт:
Впрочем, тут у нас возникли разногласия. Главный терятель полагал, что длина аллеи — 130 метров, мы же с девочкой стояли на том, что всего 120. Почему? Да потому что между тринадцатью скамейками всего двенадцать пролётов. В конце концов Главный терятель с этим согласился. Куда труднее оказалось втолковать ему, чего хочет Пуся. А хотел он, в общем, немногого: чтобы все узнали, во сколько раз быстрее котёнка он бежал во время их встречи.
В общем, задачка пустяковая. Особенно для человека, возглавляющего Стол находок утерянных чисел. Но Пуся на меня и не рассчитывал. Его задача предназначалась девочке, и она мигом определила, что, повернув у четвёртой с конца скамейки, котёнок преодолел три пролёта, стало быть, сперва проделал 1/4
Пуся после этого опять возгордился, но уже не за себя, а за свою повелительницу, которая, между прочим, тоже надумала угостить нас задачкой.
— Вот, слушайте, — сказала она, смешливо поглядывая то на меня, то на Главного терятеля. — Трое охотников гонятся за шестью зайцами. Как вы думаете, сколько зайцев достанется каждому?
Главный терятель глубокомысленно помолчал и со вздохом заявил, что задача не так проста, как кажется. Чтобы решить её, надо учесть, как хорошо стреляет каждый охотник и как быстро бегает каждый заяц. Если, конечно, решать всерьёз.
— А если не всерьёз? — прищурилась девочка.
— Тогда… Тогда, очевидно, каждому охотнику достанется по два зайца…
— А вот и неправда! — торжествующе возразила девочка. — Ничего им не достанется!
— То есть как? Почему? — опешил Главный терятель.
— А потому что за двумя зайцами погонишься — ни одного не поймаешь!
Все мы громко расхохотались, а пуще всех — Пуся. У этого маленького пёсика юмора на десятерых. Мы уже давно отсмеялись, а он всё тявкал и тявкал, и, право, не знаю, на сколько бы его хватило, если б не обсерватория…
НУЛЕВОЕ ЗАТМЕНИЕ
Вы, конечно, понимаете, что не одни пирожковые, пельменные и парикмахерские попадались нам в Городке юных пенсионеров. Ведь жители его состояли не только из поваров и парикмахеров. Были там токари и лекари, фрезеровщики и фальцовщики, таксисты и артисты, сапожники и художники (один из них увековечил Пусю), закройщики и обойщики, стекломойщики и спортсмены… В общем, представители самых разных профессий, а стало быть, и учёные. Биологи и геологи, гидрологи и зоологи, вулканологи и археологи, метеорологи и лингвисты. А также физики и электроники, математики и бионики, демографы и картографы, географы и океанографы, правоведы и почвоведы, агрономы и астрономы…
Все эти люди с увлечением работали. В их распоряжении были прекрасно оборудованные лаборатории, в том числе — великолепная обсерватория. Находилась она в двух шагах от нашей прогулочной аллеи, и Пуся, всё ещё смеясь, обратил внимание на царившую там суету. Тут он вдруг замолчал и, словно бы вспомнив что-то важное, со всех ног понёсся к обсерватории.
Мы, естественно, поспешили за ним и пришли как раз вовремя, чтобы получить необходимые разъяснения, прежде чем…
Но я забегаю вперёд и могу упустить что-нибудь важное. Лучше начну с самого главного: в обсерватории готовились к полному солнечному затмению. И начала его ждали через несколько минут. Как видите, теперь уже незачем было гадать, зачем Пуся привёл нас в Городок юных пенсионеров. Ведь он, находясь в должности Главной ищейки, должен был наводить Главного терятеля на интересные, богатые ассоциациями впечатления! А что может сравниться с полным солнечным затмением? Разве что полное лунное…
Кстати, и то и другое происходит тогда, когда Солнце, Луна и наблюдатель, находящийся на Земле, оказываются на одной прямой. Вся разница в том, что при солнечном затмении Луна находится между. Солнцем и Землёй и, само собой,
Сегодня, однако, ожидалось затмение не просто полное, а редкая его разновидность — кольцеобразное затмение. И дело тут вот в чём. Поперечник Луны много меньше поперечника Солнца. Почти в четыреста раз! Луна между тем при полном солнечном затмении закрывает солнечный диск целиком. Отчего? Да оттого, что Луна во столько же раз ближе к Земле. Вот нам и кажется, что лунный и солнечный диски по размерам совершенно одинаковы. Но иногда, когда Луна и Земля взаиморасположены на своих орбитах определенным образом, лунный диск видится нам чуть меньшим, чем солнечный. И тогда вокруг чёрного солнечного диска остаётся узкое, световое кольцо. Оно ярко сверкает на чёрном, усеянном звёздами небе, и напоминает сказочную корону. Или пылающий обруч, через который прыгают дрессированные хищники в цирке.
Волшебная картина. Совершенно волшебная! А уж если глядеть на неё сквозь специальное стекло, да ещё через разверстый купол обсерватории, она во сто раз прекраснее, уверяю вас! Именно такой, стократ более прекрасной мы её и увидели, когда прильнули к своим стёклам.
Но тут произошло ещё одно, очень для нас важное событие. Пока там, в беспредельной космической вышине, совершалось солнечное затмение, в голове у Главного терятеля наступило внезапное прояснение. Он вдруг заметил, что светящийся ободок вокруг чёрного затмённого солнца необыкновенно напоминает нуль. Сравнение его привело в восторг тамошних астрономов. Неудивительно: ведь где астрономия, там и математика. А математики — кто ж этого не знает! — поголовно неравнодушны к нулю. И вот, посовещавшись, они порешили переименовать кольцеобразное затмение в нулевое.
Главного терятеля это очень обрадовало. Он и не подозревал, что его замечание приведёт к таким важным научным переменам. Но не знал он и другого: что сам переменится к лучшему. Всеобщее внимание вдохновило его на новые подвиги. В голове у него прояснилось ещё больше, и вдруг… И вдруг там блеснула ещё одна нулевая ассоциация. Он вспомнил, что в утерянном номере нулей не было.
Так у нас появился ещё один признак утерянного числа, и девочка тотчас занесла его в свой блокнот. А я взял свой и записал вот что: «Успех окрыляет человека».
К тому времени, как нам покинуть обсерваторию, солнце снова засияло вовсю. Но девочка всё ещё вспоминала чёрное звёздное небо, и пылающее кольцо вокруг чёрного диска, и неожиданную нулевую ассоциацию Главного терятеля.
— Не понимаю, — сказала она вдруг. — С чего это все носятся с этим нулём? Что в нём особенного? Фитюлька. Пустышка. Дырка от бублика. А разговоров… Много шума из ничего.
— Это ты к месту заметила, — отозвался я. — Как видишь, из ничего всё же кое-что получается. Хотя бы шум.
— Так то в жизни, — возразила девочка.
— Не только в жизни. Иной раз в математике из нуля такое выходит…
— Например? — сейчас же прицепилась девочка.
— Например, вот что! — вмешался Главный терятель.
Он присел на корточки и написал пальцем на дорожке то самое десятизначное число, о котором говорил в павильоне «Чашка чая, десять фишек»: 9 999 999 999.
— Перед нами огромное число, — сказал он. — Девять миллиардов девятьсот девяносто девять миллионов девятьсот девяносто девять тысяч девятьсот девяносто девять. Внимание! Сейчас мы сыграем с ним в крестики-нулики. Каким образом? Очень просто. Ставим после него крестик, то есть знак умножения, потом нулик и — фьють! От нашего числа ничего не осталось. Десять миллиардов без единицы превратились в ничто, в нуль! 9 999 999 999 х 0 = 0. Что вы на это скажете, миледи?