Чтение онлайн

на главную - закладки

Жанры

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Шрифт:

Выводы о функции гена были получены в результате кропотливых исследований, в ходе которых ученые использовали генную инженерию, чтобы перенести обнаруженный ген сначала в клетки дрожжей, а потом в клетки модельного растения Arabidopsis thaliana. Но когда речь зашла о создании рыночного сорта пшеницы с этим геном, ученые заявили, что отказались от генной инженерии. Вместо этого они проводили последовательные скрещивания культивируемой пшеницы с ее диким родственником. Скрещивания сопровождались анализом ДНК в поисках искомой модификации генома.

К ученым претензий нет — они проделали сложную и добросовестную работу, но ведь они могли просто взять и перенести ген, получив идентичный результат! В обоих случаях

ген одного вида пшеницы оказался бы в геноме другого вида. Но благодаря использованному подходу полученный сорт юридически не является трансгенным, а значит, его не нужно подвергать дополнительным тестам, его будут охотнее покупать, его поля не будут вытаптывать противники ГМО, а Сералини не станет кормить им крыс, чтобы доказать его опасность.

Гринпис ликовал: «эта биотехнология не требует вмешательства в геном», «она не представляет угрозы человеческому здоровью и окружающей среде». Хотя в действительности перенос гена имел место (что это, как не вмешательство в геном?), а безопасность нового сорта не была проверена даже на одном поколении крыс. Но предположим на минутку, что австралийские ученые просто обеспечили себе алиби, а на самом деле использовали генную инженерию? Затрудняюсь представить, как это будут доказывать в суде, если кому-то придет в голову проверить.

Хорошая новость заключается в том, что, даже если все организмы на рынке, включая самые «натуральные» и истыканные маркировкой «не содержит ГМО», на самом деле улучшены с помощью генной инженерии, ничего страшного в этом нет. Это не несет никакой дополнительной угрозы нашему здоровью. Но лучше бы высококачественные и дешевые продукты просто были легальными. Мне выход видится таким: во-первых, необходимо объяснять людям, что ГМО — это хорошо. Во-вторых, нужно умерить регулирование ГМО, приравняв их наконец в правах к обычным продуктам. В-третьих, стоит перейти от бессмысленных маркировок к маркировкам осмысленным, основанным на научных знаниях и важной и доступной информации о доказанных рисках для здоровья потребителя и о преимуществах продукта.

Глава 11

Синтаксис жизни. Регуляция работы генов

Генную инженерию можно представить с помощью метафоры. Возьмем роман Льва Николаевича Толстого «Война и мир». В этом тексте 2517633 символа, что примерно равно числу «букв» в геноме бактерии возбудителя дифтерии Corynebacterium diphtheriae. Мы собираемся вставить в «Войну и мир» фрагмент из романа «Война миров» Герберта Уэллса, где описано, как инопланетяне вторгаются на Землю, уничтожают правительственные войска в Англии с помощью боевых треножников, но потом погибают, сраженные земными микробами — быть может, той же дифтерийной палочкой.

«Большая сероватая круглая туша, величиной, пожалуй, с медведя, медленно, с трудом вылезала из цилиндра. Высунувшись на свет, она залоснилась, точно мокрый ремень. Два больших темных глаза пристально смотрели на меня. У чудовища была круглая голова и, если можно так выразиться, лицо. Под глазами находился рот, края которого двигались и дрожали, выпуская слюну. Чудовище тяжело дышало, и все его тело судорожно пульсировало. Одно его тонкое щупальце упиралось в край цилиндра, другим оно размахивало в воздухе. Этот толстый молодой человек был незаконный сын знаменитого екатерининского вельможи, графа Безухого».

Это один из возможных результатов вставки фрагмента с описанием марсианина из «Войны миров» в роман Толстого. Согласитесь, образ Пьера Безухова со щупальцем и капающей слюной шокирует. Результат вставки был бы не столь драматичным, если бы текст оказался между главами. В этом случае образ Пьера в воображении читателя остался бы прежним.

Контекст имеет огромное значение и для работы генов. Возьмем ген медузы, кодирующий зеленый флуоресцентный белок. Вставим его в геном дифтерийной палочки сразу за другим геном, кодирующим натриевый канал — белок, находящийся в мембране клетки и пропускающий ионы натрия. Бактериальная

клетка начнет производить гибридный белок, который одновременно светится и является каналом. Если мы поместим такую клетку под специальный флуоресцентный микроскоп, то по свечению сможем узнать, в какой части клеточной мембраны расположены натриевые каналы. Если же ген флуоресцентного белка вставить за другим геном, например за геном калиевых каналов, то мы узнаем и их расположение. Подобные гибридные белки — своеобразные Безуховы-марсиане в нашей аналогии. В зависимости от контекста мы можем сделать марсианином Безухова, а можем Наташу Ростову или Андрея Болконского.

При вышеописанном встраивании одного гена за другим важно учесть несколько факторов. Рассмотрим последовательность кодонов AUG GUG CUC UUA. Здесь закодированы аминокислоты метионинвалин-лейцин-лейцин. Но данную последовательность нуклеотидов можно разбить на тройки кодонов по-другому: A UGG UGC UCU UA. Теперь здесь закодированы триптофан-цистеин-серин. Возможен и третий вариант разбиения данной последовательности на кодоны: AU GGU GCU CUU A. Глицин-аланин-лейцин.

Эти три варианта разбиения последовательности на кодоны называются рамками считывания. На практике синтез белка пойдет только по одной из трех рамок, потому что рибосома начинает синтез не со случайного места, а с конкретного старт-кодона. У эукариот обычно старт-кодоном выступает самый первый кодон AUG (ближайший к 5’-концу), он кодирует метионин. У прокариот, как правило, старт-кодоном выступает AUG, на расстоянии около восьми нуклеотидов от которого есть особая последовательность Шайна — Дальгарно. Обычно она содержит фрагмент AGGAGG. Генным инженерам важно понять, какая рамка считывания будет использоваться. Если мы хотим получить гибридный белок, оба гена должны оказаться в одной рамке считывания.

Кроме того, нужно учитывать, что первый ген, за которым мы встраиваем второй, имеет стоп-кодон. На стоп-кодоне синтез белка заканчивается, и дальнейшая последовательность нуклеотидов значения не имеет. Для того чтобы получился гибридный белок, нужно либо убрать этот стоп-кодон, либо вставить второй ген до него. Теперь, когда мы поняли, как создавать гибридные белки, давайте разберемся, как нам заставить бактерию производить чистый флуоресцентный белок.

Возьмем ген флуоресцентного белка и вставим его в геном бактерии между двумя другими генами, так чтобы он их не задевал. Для того чтобы ген работал, необходимо, чтобы с него считывалась молекула РНК. Для этого перед геном должен располагаться специальный участок, который называется промотор. Фермент РНК-полимераза связывается с промотором, а затем начинает перемещаться вдоль молекулы ДНК (строго в одном направлении, от 5’-к 3’-концу), синтезируя комплементарную молекулу РНК, которая впоследствии станет инструкцией для синтеза белка.

Место начала считывания РНК у бактерий определяется так: за 10 нуклеотидов до него должен быть участок с последовательностью, похожей на TATAAT, а за 35 нуклеотидов — участок, похожий на TTGACA. У эукариотических организмов все сложнее, и мы поговорим о них позже.

В предыдущем примере генной инженерии нас не волновало наличие промотора, ведь у исходного гена, к которому пристроили ген зеленого флуоресцентного белка, бактериальный промотор уже был. Промотор должен быть перед любым местом в геноме, с которого считывается РНК. Но у нашего гена медузы нет собственного бактериального промотора, и вставили мы его в произвольное место, а не туда, где он непременно есть. Необходимый промотор проще всего вставить сразу вместе с геном. Берем бактерий, выделяем из них ДНК, вырезаем из этой ДНК участок промотора, присоединяем промотор к гену медузы, а затем вставляем всю конструкцию в геном живой бактерии. Альтернативно промотор или конструкцию целиком можно синтезировать на специальном химическом синтезаторе.

Поделиться:
Популярные книги

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Жизнь в подарок

Седой Василий
2. Калейдоскоп
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Жизнь в подарок

По машинам! Танкист из будущего

Корчевский Юрий Григорьевич
1. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.36
рейтинг книги
По машинам! Танкист из будущего

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Аргумент барона Бронина 2

Ковальчук Олег Валентинович
2. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 2

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Неудержимый. Книга XXII

Боярский Андрей
22. Неудержимый
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXII

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала