Чтение онлайн

на главную - закладки

Жанры

Сумма технологии

Лем Станислав

Шрифт:

1. Несогласованная избыточность в передаче информации и строении органов. В соответствии с закономерностью, открытой Данкоффом, Эволюция поддерживает избыточность передаваемой в генотипе информации на самом низком уровне, который удается еще примирить с продолжением рода. Таким образом, Эволюция подобна конструктору, который не заботится о том, чтобы все его автомобили достигли финиша: его вполне устраивает, если доедет большая их часть. Этот принцип «статистического конструирования», в котором успех решает преобладание, а не совокупность результатов, чужд всему нашему психическому укладу [XV] , особенно когда за низкую избыточность информации приходится расплачиваться дефектами не машин, а организмов, в том числе и человеческих: ежегодно 250000 детей рождаются с серьезными наследственными пороками. Минимальная избыточность свойственна также конструкции индивидуумов. Вследствие несогласованной изнашиваемости функций и органов организм стареет неравномерно. Отклонения от нормы происходят в разных направлениях; обычно они носят характер «системной слабости», например слабости систем кровообращения, пищеварения, суставов и т.п. И в конце концов, несмотря на целую иерархию регуляторов, закупорка одного лишь кровеносного сосудика в мозге или дефект одного насоса (сердце) вызывает смерть. Отдельные механизмы, которые должны противодействовать таким катастрофам, например артериальное объединение венечных сосудов сердца, в большинстве случаев подводят, поразительно напоминая «формальное выполнение правил» на каком-нибудь предприятии, где противопожарных инструментов так мало (хотя они и находятся в должном месте) или же они «для парада» так закреплены, что в случае экстренной надобности ни на что, собственно говоря, и не годны.

XV

Примечание

автора:
Рассмотренная в тексте «антистатистическая позиция» конструктора ныне, по существу, уже устарела. Надежность устройств нельзя рассматривать независимо от статистических методов. К этому с неизбежностью привел технологический прогресс, при котором серийное (массовое) производство сопровождается ростом сложности изготовляемых устройств. Если каждый элемент системы, состоящей из 500 элементов, надежен на 99%, то система в целом надежна всего лишь на 1% в предположении, что все элементы жизненно важны (для функционирования системы). Максимально достижимая надежность пропорциональна квадрату числа элементов, в результате чего получение надежного продукта невозможно, особенно когда он представляет собой систему высокой сложности. Системы, «подключенные» к человеку как к регулятору (самолет, автомобиль), менее чувствительны к повреждениям, поскольку пластическое поведение человека часто позволяет компенсировать нарушение функций. В то же время в «безлюдной» системе, такой, как межконтинентальная ракета или какая-то автоматическая система вообще (скажем, цифровая машина), не может быть и речи о подобной пластичности. Меньшая их надежность вызвана не только большим числом составляющих их элементов и не только новизной реализуемой технологии, она вызвана также отсутствием человека, выполняющего роль амортизатора случайных нарушений. Теория надежности в связи с лавинообразным прогрессом в области конструирования является ныне обширной областью науки. Методы, какими она сегодня пользуется, являются, как правило, «внешними» по отношению к конечному продукту (расчеты, многократные испытания, изучение среднего времени между отказами и времени старения элементов, контроль качества и т.д.). Эволюция также применяет «внешний контроль» (им является естественный отбор), а кроме того, и «внутренние» методы: дублирование устройств, встраивание в них тенденции к самоисправлению (как локальной, так и подчиненной вспомогательно-управляющему контролю центров, стоящих на более высокой иерархической ступени). И, пожалуй, важнее всего, что в качестве регуляторов Эволюция использует устройства, обладающие максимальной пластичностью. И если, несмотря на принципиальную эффективность всех этих способов, организмы так часто оказываются ненадежными, то виновно в этом в значительной мере «нежелание» Эволюции пользоваться большой избыточностью при передаче конструкционно-творческой информации (как гласит правило Данкофа).

По сути дела, 99% всех страданий и старческих заболеваний связано с проявлением ненадежности все большего числа систем организма (потеря зубов, упругости мышц, зрения, слуха, локальная атрофия тканей, дегенеративные процессы и т.д.). В будущем главное направление борьбы с ненадежностью устройств в технике будет, очевидно, сближаться с эволюционным, однако с тем существенным различием, что Эволюция скорее «встраивает» в свои творения конструкции, «преодолевающие ненадежность», а человек-конструктор более склонен к применению методов, «внешних» по отношению к конечному продукту, чтобы не усложнять его чрезмерным количеством элементов. Критерии деятельности в обоих случаях весьма различны. Так, например, «материальные затраты» для Эволюции не играют роли, поэтому количество расходуемого наследственного материала (спермиев, яйцеклеток) не имеет значения, лишь бы его хватило для сохранения непрерывности вида. Изучение эволюции отдельных технических устройств показывает, что рост эффективности (повышение надежности) является процессом, происходящим значительно позже, чем отыскание решения, оптимального в целом. Так, принципиально, то есть в общем плане, самолеты тридцатых и даже двадцатых годов очень походили на современные – это были машины тяжелее воздуха, поддерживаемые подъемной силой крыльев, приводимые в движение двигателем внутреннего сгорания с электрическим зажиганием, машины с такой, как сегодня, системой управления и т.п. Успех трансокеанских перелетов был достигнут не в результате увеличения размеров (ибо и прежде строили большие самолеты, иногда даже больше современных), а лишь в результате повышения надежности функций, в то время недостижимого.

Количество элементов, растущее экспоненциально, резко снижает надежность очень сложных устройств. Отсюда огромные трудности создания устройств столь сложных, как многоступенчатая ракета или вычислительная машина. Увеличение надежности путем дублирования элементов и передачи информации тоже имеет свои пределы. Устройство с наилучшим резервированием вовсе не обязательно является оптимальным решением. Это немного похоже на прочность стального каната: если он слишком длинный, то никакой прирост толщины уже не поможет, ибо канат оборвется под собственным весом. Тем самым если не вмешается какой-то неизвестный нам фактор, то сбои в работе, вызванные экспоненциальным ростом ненадежности, установят предел построению чрезвычайно сложных систем (скажем, электронных цифровых машин с сотнями миллиардов или биллионами элементов).

Возникает весьма существенный вопрос: станет ли когда-нибудь возможным производство устройств, способных превысить этот «порог надежности», то есть более эффективных в этом отношении, чем эволюционные решения? По-видимому, нет. Аналогичные пределы подстерегают нас, пожалуй, на всех уровнях материальных явлений, то есть также в физике твердого тела, в молекулярной технике и т.п. Старение на тканево-клеточном уровне многие биофизики считают кумулятивным эффектом «элементарных молекулярных ошибок», «атомных ляпсусов», какие живая клетка допускает в ходе своего существования, причем эти «ошибки» выводят в конце концов систему как целое за пределы обратимых изменений. А если это так, то можно в свою очередь спросить, не вытекает ли статистичность законов микрофизики, эта характерная недостоверность результатов, тяготеющая над каждым самым простым материальным актом (например, над распадом радиоактивного атома, соединениями атомных частиц, над захватом этих частиц атомными ядрами), из того, что все, что происходит, «ненадежно». И что, следовательно, даже атомы и их «составные части» – протоны, нейтроны, мезоны, – понимаемые как своеобразные «машины», то есть системы, проявляющие регулярность поведения, и сами не являются «надежными» элементами той конструкции, которую мы зовем Вселенной, а также не образуют «надежных устройств», входя в состав химических молекул, твердых тел, жидкостей, газов. Не лежит ли, одним словом, статистическая ненадежность действия в основе всех вскрываемых Наукой законов Природы? И не построен ли Космос как древо Эволюции по принципу «Надежная система» (точнее, относительно надежная) из «Ненадежных компонентов»? И не является ли своеобразная «полюсность» космической структуры (материя – антиматерия, положительные частицы – отрицательные частицы и т.д.) как бы необходимой, поскольку никакой другой космос не был бы возможен из-за подстерегающей «ненадежности действия», которая стала бы на пути какой бы то ни было эволюции, навсегда фиксировав мир на стадии «первичного хаоса»? Такая (надо признать, полуфантастическая) постановка проблемы может показаться антропоморфической или хотя бы открывающей лазейку для дискуссии об «Инженере Космоса», то есть «Творце Всего Сущего», но это не так. Ведь, установив, что Эволюция не имела никакого индивидуального творца, мы можем все же обсуждать ее конструкторское мастерство, а следовательно, и упомянутый выше принцип построения сравнительно надежных систем из весьма ненадежных компонентов.

2. Предыдущему принципу экономии или прямо-таки информационной скупости противоречит принцип, состоящий в том, чтобы не исключать в онтогенезе [116] лишние элементы. Будто механически, по инерции передаются реликты давно исчезнувших форм, которые предшествовали данному виду. Так, например, в процессе эмбриогенеза плод (например, человеческий зародыш) последовательно повторяет фазы развития, свойственные древним эмбриогенезам, формируя поочередно жабры, хвост и т.п. Используются они, правда, для других целей (из жаберных дуг образуются челюсть, гортань), поэтому, на первый взгляд, это не играет роли. Однако организм является столь сложной системой, что любой необязательный избыток сложности увеличивает шансы дискоординации, возникновения патологических форм, ведущих к новообразованиям и т.п.

116

Индивидуальное развитие организма от момента зарождения.

3. Следствием

предыдущего принципа «излишней сложности» является существование биохимической индивидуальности каждой особи. Межвидовая непередаваемость наследственной информации понятна, так как некая пангибридизация, возможность скрещивания летучих мышей с лисицами и белок с мышами низвергала бы экологическую пирамиду гармонии живой природы. Но эта взаимная отчужденность разновидовых генотипов находит продолжение также в пределах одного вида в форме индивидуальной неповторимости белков организма. Биохимическая индивидуальность ребенка отличается от биохимической индивидуальности даже его матери. Это имеет серьезные последствия. Биохимическая индивидуальность проявляется в яростной защите организма от любого чужеродного белка, из-за чего оказываются невозможными спасающие жизнь пересадки (кожи, костей, органов и т.д.). Поэтому, чтобы спасти жизнь людям, костный мозг которых потерял кроветворную способность, приходится сначала подавлять весь защитный аппарат их организмов и только после этого осуществлять пересадку соответствующей ткани, взятой у других людей – доноров.

Принцип биохимической индивидуальности в ходе естественной эволюции не подвергался нарушению, то есть отбору на однородность белков у всех особей одного вида, поскольку организмы построены таким образом, чтобы каждый полагался исключительно на самого себя. Эволюция не учла возможности получения помощи извне. Таким образом, хотя причины нынешнего положения понятны, это не меняет того факта, что медицина, неся организму помощь, вынуждена в то же время бороться с «неразумной» тенденцией этого же организма к защите от спасительных процедур.

4. Эволюция не может отыскать решение путем постепенных изменений, если каждое из таких изменений не оказывается полезным немедленно, в данном поколении. Аналогично этому она не может решать задачи, требующие не мелких изменений, а радикальной реконструкции. В этом смысле Эволюция проявляет «оппортунизм» и «близорукость». Очень многие системы живого отличаются из-за этого сложностью, которой можно было бы избежать. Мы говорим здесь не о той «излишней сложности», о которой шла речь во втором пункте, ибо там мы критиковали избыток сложности на пути к достижению конечного состояния (яйцеклетка – плод – зрелый организм), и не о том, о чем мы говорили в третьем пункте, указывая на вредность излишней биохимической сложности. Сейчас, все более впадая в иконоборчество, мы критикуем уже основной замысел отдельных решений, касающихся всего организма. Эволюция не могла, например, сформировать механических устройств типа колеса, поскольку колесо с самого начала должно быть самим собой, то есть иметь ось вращения, ступицу, диск и т.д. Оно должно бы было, таким образом, возникнуть скачкообразно, ибо даже самое маленькое колесо есть уже сразу готовое колесо, а не какая-то «переходная» форма. И хотя, по правде говоря, у организмов никогда не было большой потребности именно в таком механическом устройстве, этот пример убедительно показывает, задачи какого типа не в состоянии решать Эволюция. Многие механические элементы организма можно заменить немеханическими. Так, например, в основу кровообращения мог бы лечь принцип электромагнитного насоса, при этом сердце было бы электрическим органом, который создает соответствующим образом меняющиеся поля, а кровяные тельца были бы диполями или имели бы значительные ферромагнитные вкрапления. Такой насос поддерживал бы кровообращение более равномерно, с меньшей затратой энергии, независимо от степени эластичности стенок сосудов, которые должны компенсировать колебания давления при поступлении очередного ударного объема крови в аорту. Поскольку орган, перемещающий кровь, основывал бы свое действие на прямом преобразовании биохимической энергии в гемодинамическую, то одна из сложнейших и, по существу, не решенных проблем – проблема хорошего питания сердца, когда оно больше всего в нем нуждается, то есть в момент сокращения, перестала бы вообще существовать. В схеме, которую реализовала Эволюция, мышца, сокращаясь, в какой-то степени уменьшает просвет питающих ее сосудов, в связи с чем поступление крови, а следовательно, и кислорода в мышечные волокна временно уменьшается. Безусловно, сердце справляется со своей работой и при таком решении. Тем хуже для этого решения – ведь его можно вовсе избежать. Скудный резерв избыточности при подаче крови приводит в настоящее время к тому, что заболевания коронарных сосудов являются одной из главных причин смертности в мировом масштабе. «Электромагнитный насос» так никогда и не был реализован, хотя Эволюция умеет формировать как дипольные молекулы, так и электрические органы. Но указанный замысел потребовал бы совершенно невероятного и при этом одновременного изменения в двух системах, почти полностью изолированных друг от друга: кроветворные органы должны были бы начать производить постулированные нами «диполи», то есть «магнитные эритроциты», и в то же самое время сердце из мышцы должно бы было превратиться в электрический орган. А ведь такое совпадение слепых, как нам известно, мутаций – явление, которого можно напрасно ждать и миллиард лет, и так оно и случилось. Впрочем, куда уж более скромную задачу – закрыть отверстие межкамерной перегородки сердца у пресмыкающихся – и то Эволюция не решила; худшая гемодинамическая характеристика ей не помеха, да и вообще она оставляет своим творениям самые примитивные органы и биохимическое «оснащение», лишь бы с их помощью они управлялись с сохранением вида.

Следует заметить, что на этом этапе нашей критики мы не постулируем решений, которые эволюционно, то есть биологически, невозможны, например решений, связанных с заменой некоторых материалов (костяных зубов – стальными или поверхности суставов из хрящей – поверхностями из тефлона). Немыслимо представить себе какую бы то ни было реконструкцию генотипа, которая позволила бы организму вырабатывать тефлон (фтористое соединение углерода). Зато программирование в наследственной плазме таких органов, как упомянутый «гемоэлектрический насос», возможно хотя бы в принципе.

«Оппортунизм» и близорукость, или, вернее, слепота, Эволюции означает на практике принятие решений, которые случайно появились первыми, и отказ от этих решений лишь тогда, когда случай же создаст другую возможность. Но если однажды принятое решение блокирует путь ко всяким другим, будь они самыми совершенными и несравненно более эффективными, то развитие данной системы замирает. Так, например, челюсть хищников-пресмыкающихся десятки миллионов лет оставалась системой механически очень примитивной; это решение «протаскивалось» почти во все ветви пресмыкающихся, если они происходили от общих предков; улучшение «удалось» ввести только у млекопитающих (хищники типа волка), то есть чрезвычайно поздно. Как не раз уже правильно отмечали биологи, Эволюция является прилежным конструктором только в разработке решений, неоспоримо важных, лишь в том случае, когда они служат организму в фазе полной его жизнеспособности (до полового размножения). Зато все, что не имеет столь критического значения, оказывается более или менее заброшенным, пущенным на произвол случайных метаморфоз и слепой удачи.

Эволюция не может, конечно, предвидеть последствий своего конкретного поступка, хотя бы он заводил целый вид в тупик развития, а сравнительно мелкое изменение позволило бы избежать этого. Она реализует то, что возможно и выгодно тотчас же, нисколько не заботясь об остальном. Более крупные организмы имеют и более крупный мозг с непропорционально большим числом нейронов. Отсюда и кажущееся пристрастие к «ортоэволюции» – медленному, но непрерывному увеличению размеров тела, которое, однако, очень часто оказывается настоящей ловушкой и орудием будущей гибели: ни одна из древних ветвей гигантов (например, юрские пресмыкающиеся) не сохранилась до наших дней. Таким образом, Эволюция при всей своей скупости, проявляющейся в том, что она берется лишь за самые необходимые «переделки», является самым расточительным из всех возможных конструкторов.

5. Далее, Эволюция как конструктор хаотична и нелогична. Это видно, например, из способа распределения ею регенерационных потенций среди видов. Организм построен не по принципу сменных макроскопических частей, свойственному человеческой технике. Инженер проектирует так, чтобы можно было заменять целые блоки устройств. Эволюция же осуществляет принцип «микроскопических сменных частей»; этот принцип проявляется непрестанно, так как клетки органов (клетки кожи, волос, мышц, крови и т.п., за исключением немногочисленных категорий клеток, например нейронов) все время заменяются путем деления; дочерние клетки и являются «сменными частями». Это был бы отличный принцип, лучше инженерного, если бы практика не противоречила ему так часто, как обычно случается.

Человеческий организм построен из триллионов клеток; каждая из них содержит не только ту генотипическую информацию, которая необходима для выполняемых ею функций, но и полную информацию – ту же самую, которой располагает яйцеклетка. Поэтому теоретически возможно развитие клетки, скажем, слизистой оболочки языка во взрослый человеческий организм. На практике это невозможно, поскольку этой информацией не удается воспользоваться. Соматические клетки не обладают эмбриогенетической потенцией. По правде говоря, мы не очень хорошо знаем, почему это так. Быть может, здесь играют роль некоторые ингибиторы (агенты, тормозящие рост), ибо этого требует принцип взаимодействия тканей; возникновение раковых опухолей, согласно новейшим работам, связано, как полагают, с исчезновением этих ингибиторов (гистонов) в клетках, подвергшихся соматической мутации.

Поделиться:
Популярные книги

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Ты - наша

Зайцева Мария
1. Наша
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Ты - наша

Игра Кота 2

Прокофьев Роман Юрьевич
2. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
рпг
7.70
рейтинг книги
Игра Кота 2

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Все повести и рассказы Клиффорда Саймака в одной книге

Саймак Клиффорд Дональд
1. Собрание сочинений Клиффорда Саймака в двух томах
Фантастика:
фэнтези
научная фантастика
5.00
рейтинг книги
Все повести и рассказы Клиффорда Саймака в одной книге

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Коллектив авторов
Warhammer Fantasy Battles
Фантастика:
фэнтези
5.00
рейтинг книги
Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Печать пожирателя 2

Соломенный Илья
2. Пожиратель
Фантастика:
городское фэнтези
попаданцы
аниме
сказочная фантастика
5.00
рейтинг книги
Печать пожирателя 2

Завод: назад в СССР

Гуров Валерий Александрович
1. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод: назад в СССР

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4