Супернавигаторы. О чудесах навигации в животном мире
Шрифт:
Я поделился своим восторгом с мистером Стедменом, и тот, не предупредив меня, заказал куколку данаиды монарха в одной из компаний, занимавшихся обеспечением энтомологов. Когда я открыл упаковку, то сразу же узнал ее содержимое: это была моя собственная Danaus plexippus!
Куколка была неземным произведением ювелирного искусства, длиной всего сантиметра два или три. Она лежала на подстилке из ваты, заключенная в свою блестящую броню, похожую на зеленую яшму, как миниатюрный китайский император, ожидающий перерождения. Я мог смутно различить контуры крыльев и сегменты будущего тела взрослого насекомого. По самой толстой части куколки проходила полукруглая дуга мельчайших золотистых точек, блестевших металлическим отливом; остальные золотые крупинки были рассеяны по другим участкам куколки. Куколка завораживала своей красотой – на мой взгляд, она была даже красивее,
Я так и не увидел появления бабочки: она умерла, не достигнув зрелого состояния. Но к этому времени монарх и его необычайная жизнь уже захватили мое воображение.
Много лет спустя я впервые увидел живого монарха в песчаных дюнах Амагансетта, недалеко от городка Монток на восточной оконечности острова Лонг-Айленд. Был конец августа, и эта бабочка, вместе с миллионами других, которых я не видел, уверенно летела к юго-западу. Ее полет был похож на беззаботный танец. Сделав несколько ленивых взмахов крыльями, она поднималась выше, затем планировала в течение нескольких секунд, медленно теряя высоту, а потом снова «включала двигатель». Но куда она летела и как, черт возьми, находила дорогу?
Именно с попытки ответить на эти вопросы и началось путешествие, которое в конце концов привело меня к написанию этой книги. Я знал, что на этом пути меня ожидают сюрпризы, но даже не подозревал, насколько многочисленными и разнообразными они окажутся.
Первые навигаторы
Когда я начинал свои исследования, я думал только о тех животных, которых можно увидеть, – например, насекомых, птицах, рептилиях, крысах, людях. Однако, хотя первые живые организмы, появившиеся на нашей планете, были чрезвычайно маленькими, первопроходцами в области бионавигации были именно они.
Земля сформировалась около 4,56 миллиарда лет назад в результате случайной встречи блуждающих астероидов, притянутых друг к другу гравитацией. В то время она была не очень-то гостеприимным местом: всю ее поверхность покрывали расплавленные горные породы. Приблизительно 4,5 миллиарда лет назад этот океан магмы начал остывать и затвердевать, и появились первые континенты, но ни океанов, ни даже воздуха на планете еще не было.
В течение сотен миллионов лет молодую планету бомбардировали все новые астероиды, но эти взрывные столкновения приносили не только разрушения. Благодаря им на Земле появилась вода и химические ингредиенты, давшие начало первым живым организмам [7] . Приблизительно 3,9 миллиарда лет назад Земля начала успокаиваться, и в самых глубинах ее первых океанов, вблизи гидротермальных источников – перегретых струй насыщенной минералами воды, бивших тогда и бьющих до сих пор из морского дна, – начали возникать простейшие формы жизни [8] . В их числе были и самые первые бактерии.
7
Santosh, M., Arai, T., & Maruyama, S. (2017). ‘Hadean Earth and primordial continents: the cradle of prebiotic life’, Geoscience Frontiers, 8 (2). P. 309–327.
8
Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., … & Little, C. T. (2017). ‘Evidence for early life in earth’s oldest hydrothermal vent precipitates’, Nature, 543 (7643). P. 60–64.
Хотя эти одноклеточные организмы чаще всего ассоциируются у нас с болезнями, в подавляющем большинстве своем бактерии безвредны, а многие из них вносят жизненно важный вклад в поддержание нашего физического и даже умственного здоровья. Чтобы выжить, они научились перемещаться к тому, что им нужно (например, к пище), и от того, что для них опасно (например, чрезмерно высокие температуры, слишком высокая или слишком низкая кислотность среды) [9] . У некоторых бактерий имеются специализированные органы движения, в том числе микроскопические моторы, приводящие в движение вращающиеся нитевидные структуры, которые называют жгутиками. Эта простейшая форма навигации известна под названием таксис – от греческого слова , означающего «порядок» или «строй».
9
Adler, J. (1976). ‘The sensing of chemicals by bacteria’, Scientific American, 234 (4). P. 40–47.
Некоторые
Распознавание окаменевших бактерий – дело чрезвычайно трудное, но остатки магнитотаксисных бактерий находили в горных породах, образовавшихся сотни миллионов, а то и миллиарды лет назад. Хотя считается, что эти бактерии самыми первыми в истории нашей планеты пользовались магнитной навигацией, первые живые образцы были найдены только в 1975 году [10] . Как ни странно, их открытие совпало с демонстрацией использования магнитной навигации гораздо более сложными организмами – птицами.
10
Blakemore, R. (1975). ‘Magnetotactic bacteria’, Science, 190 (4212). P. 377–379.
Наши ближайшие родственники среди одноклеточных организмов имеют весьма труднопроизносимое название – это хоанофлагеллаты [11] , или воротничковые жгутиконосцы. Они чуть сложнее бактерий, живут в воде и иногда собираются в колонии. Как и нам, им необходим кислород, и они способны не только обнаруживать чрезвычайно малые перепады его концентрации, но и активно перемещаться в направлении более богатого его источника – опять же при помощи своих жгутиков [12] .
11
Choanoflagellata.
12
Kirkegaard, J. B., Bouillant, A., Marron, A. O., Leptos, K. C., & Goldstein, R. E. (2016). ‘Aerotaxis in the closest relatives of animals’, eLife, 5, e18109.
Еще сильнее поражают не имеющие мозга скопления единичных клеток, известные под малопривлекательным названием слизевиков. Эти простейшие организмы умеют медленно, но верно перетекать к источнику глюкозы, спрятанному на дне U-образной ловушки. При этом они используют примитивную память, позволяющую им не возвращаться в те места, которые они уже исследовали [13] . Кроме того, они с легкостью решают одну конструкторскую задачу, оказавшуюся сложной для людей: речь идет о проектировании оптимальной железнодорожной сети.
13
Reid, C. R., Latty, T., Dussutour, A., & Beekman, M. (2012). ‘Slime mold uses an externalized spatial “memory” to navigate in complex environments’, Proceedings of the National Academy of Sciences, 109 (43). P. 17490–17494.
Исследователи обнаружили, что один слизевик, которому предложили множество овсяных хлопьев, разложенных в соответствии со схемой расположения городов вокруг Токио, принялся строить сеть туннелей для распределения питательных веществ, которые он извлекал из этих хлопьев. Как ни поразительно, в конечном виде эта сеть совпала с системой железнодорожного сообщения, реально существующей вокруг Токио. Слизевик решал эту задачу следующим образом: сначала он проложил туннели, идущие во всех направлениях, а затем стал постепенно отсекать лишние, так что в конце концов остались только те туннели, которые обеспечивали транспортировку наибольшего количества питательных веществ (то есть «пассажиров») [14] .
14
Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., … & Nakagaki, T. (2010). ‘Rules for biologically inspired adaptive network design’, Science, 327 (5964). P. 439–442.