Сварка
Шрифт:
• нормальными (плоскими);
• выпуклыми или вогнутыми.
Выпуклые швы лучше работают при статических нагрузках, а плоские (нормальные) и вогнутые лучше работают при знакопеременных и динамических нагрузках, т. к. нет резкого перехода от основного металла к сварному шву.
По условиям работы сварного узла при эксплуатации изделия сварные швы подразделяют на рабочие, непосредственно несущие нагрузку, и на соединительные (связующие) швы. Связующие швы иногда называют нерабочими швами. Они служат для скрепления частей
На чертежах сварные швы в соответствии с ГОСТом 2.312–84 обозначают основными линиями с видимой стороны и штриховыми – с невидимой стороны. К ним подходит односторонняя стрелка с полкой, над которой пишут условное обозначение шва:
1 – место специального знака:
– шов замкнутый, контурный;
– шов монтажный;
– шов контурный, незамкнутый и т. п.;
2 – место стандарта (ГОСТа) – см. табл. 4;
3 – буквенно-цифровое обозначение сварного шва – см. табл. 4;
4 – условное обозначение способа сварки:
А – автоматическая сварка;
П – механизированная сварка;
У – сварка в углекислом газе;
И – сварка в инертном газе; сварка дуговая и ручная не обозначаются;
5 – условный знак профиля шва и его катет (для угловых швов);
6 – длина и расположение участков прерывистых швов.
Рис. 42.
Классификация сварных швов:
по протяженности (а):
1 – сплошной; 2 – цепной; 3 – шахматный;
по направлению действующих усилий (б):
1 – продольный; 2 – поперечный; 3 – комбинированный
Рис. 43.
Классификация сварных швов по форме наружной поверхности:
1 – нормальный шов; 2 – выпуклый шов; 3 – вогнутый шов
Рис. 44. Обозначение позиций сварного шва по ГОСТу 2.312–84.
Пример обозначения сварного таврового соединения Т4, выполненного углекислотным полуавтоматом, для монтажных целей, с незамкнутым контуром и длиной катета шва 4 мм, длина провара 50 мм, шаг сварки 150 мм, изображен на рис. 45.
Рис. 45. Пример обозначения сварочного шва по ГОСТу 2.312–84
Глава 6
Производство сварочной
Определение сварочной дуги, ее строение, условия зажигания и горения
Электрической сварочной дугой называют устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, происходящий при давлении, близком к атмосферному, используемом при сварке, и характеризуемый высокой плотностью тока и высокой температурой.
Температура в столбе сварочной дуги достигает 5 000–12000 °C и зависит от плотности тока, состава газовой среды дуги, материала и диаметра электрода. А потому сварочная дуга является мощным концентрированным источником теплоты. Электрическая энергия, потребляемая дугой, в основном превращается в тепловую энергию.
В столбе сварочной дуги протекают следующие процессы:
1. Столб дуги заполнен заряженными частицами – электронами и ионами. В нем присутствуют также и нейтральные частицы – атомы и даже молекулы паров веществ, из которых сделаны электроды. Под действием электродинамических сил частицы перемещаются. Скорость их перемещения различна. Быстрее всего перемещаются электроны. Они легко разгоняются и, сталкиваясь с атомами и ионами, передают им свою энергию. Столкновения электронов с атомами могут быть упругими и неупругими. При упругих столкновениях атомы начинают двигаться быстрее – увеличивается их кинетическая энергия. В результате повышается температура плазмы дуги.
2. Электрон, который в электрическом поле приобрел достаточно большую энергию, является источником неупругих столкновений. Столкнувшись с атомом, он возбуждает его, а когда удар достаточно силен, то и выбивает из атома его собственные электроны.
Энергию, которая должна быть сообщена электрону для ионизации какого-либо атома, выражают в электронвольтах (эВ) и называют потенциалом ионизации. Величина потенциала ионизации зависит от строения атома. Чем меньше номер группы и больше номер периода в таблице элементов Менделеева, тем меньше энергии необходимо затратить для ионизации. Наименьшим потенциалом ионизации (3,9 эВ) обладает атом цезия, поскольку он самый тяжелый из всех щелочных металлов. Самый легкий из инертных газов – элемент последней, нулевой группы – гелий обладает наивысшим потенциалом ионизации (24,5 эВ).
Энергия, расходуемая на диссоциацию (разделение) различных молекул, также различна. Так, например, для диссоциации молекулы водорода необходимо затратить 4,48 эВ, фтора – 1,6 эВ, а углекислого газа – 9,7 эВ. Эти величины имеют для сварщиков особое значение. При разработке электродных покрытий, флюсов и проволок приходится учитывать, молекулы каких веществ диссоциируют раньше, а каких – позже, какие элементы ионизируются легче, а какие – труднее, и сколько для этого потребуется энергии.
В зависимости от числа электродов и способов включения электродов и свариваемой детали в электрическую цепь различают следующие виды сварочных дуг (рис. 46):
1. Прямого действия, когда дуга горит между электродом и изделием.
2. Косвенного действия, когда дуга горит между двумя электродами, а свариваемое изделие не включено в электрическую цепь.
3. Трехфазную дугу, возбуждаемую между двумя электродами, а также между каждым электродом и основным металлом.