Чтение онлайн

на главную - закладки

Жанры

Сверточные нейросети
Шрифт:

Таким образом, операция свертки позволяет извлекать локальные признаки из изображения, учитывая их структуру и распределение, и создавать выходное изображение, содержащее эти признаки.

Различные виды пулинга

Max-pooling

Max-pooling является одной из ключевых операций в сверточных нейронных сетях (CNN). Он применяется после операции свертки для уменьшения размерности данных, сохраняя при этом наиболее важные признаки изображения или карт признаков. В основном, max-pooling используется для уменьшения вычислительной нагрузки и количества параметров модели, а

также для предотвращения переобучения.

Операция max-pooling выполняется путем сканирования окна определенного размера (например, 2x2 или 3x3) по входной матрице (например, карты признаков) и выбора максимального значения из каждого окна. При этом окно перемещается с определенным шагом (stride) по входным данным. Результатом этой операции является новая матрица с уменьшенными размерами, содержащая наиболее активные признаки из исходных данных.

Max-pooling помогает модели выявить наиболее важные признаки изображения, такие как края, текстуры и общие паттерны, сохраняя при этом пространственную инвариантность. Это особенно полезно для задач распознавания объектов на изображениях, где расположение объекта в кадре может изменяться.

Представим, у нас есть входная матрица размером 4x4, которая представляет собой карту признаков после операции свертки:

```

[ 1, 2, 1, 0]

[ 0, 1, 2, 3]

[ 3, 0, 1, 2]

[ 2, 4, 0, 1]

```

Применим операцию max-pooling с окном размером 2x2 и шагом 2 (stride). Мы будем скользить окном по входной матрице и выбирать максимальное значение в каждом окне. Результатом будет новая матрица с уменьшенными размерами:

```

[ 2, 3]

[ 4, 2]

```

В этом примере, в первом окне размером 2x2, максимальное значение равно 3. Во втором окне, также 2x2, максимальное значение равно 4. Таким образом, операция max-pooling уменьшает размерность входных данных, оставляя наиболее активные и значимые признаки.

Average-pooling

Операция average-pooling является одним из ключевых элементов сверточных нейронных сетей (CNN). Её целью является уменьшение размерности данных после операции свертки, что позволяет сети извлекать более обобщенные признаки из изображений и сократить количество параметров, что способствует более эффективному обучению и уменьшает риск переобучения.

Принцип работы average-pooling достаточно прост: окно фиксированного размера скользит по входной матрице, а для каждой позиции в окне вычисляется среднее значение. Таким образом, каждый пиксель в новой матрице получает среднее значение пикселей из соответствующего окна входной матрицы. Это приводит к уменьшению размера изображения, сохраняя при этом общие характеристики и усредняя некоторые детали.

Для CNN операция average-pooling имеет несколько важных ролей. Во-первых, она помогает уменьшить вычислительную нагрузку и количество параметров в сети, что делает обучение более эффективным. Во-вторых, она улучшает инвариантность к масштабу и переносу, что означает, что сеть может лучше распознавать объекты в различных частях изображения или изображениях разного размера. Также, снижение размерности позволяет сети сосредоточиться на более важных признаках, игнорируя менее значимые детали.

Например, предположим, у нас есть входная

матрица размером 4x4 после операции свертки:

```

[ 1, 2, 1, 0]

[ 0, 1, 2, 3]

[ 3, 0, 1, 2]

[ 2, 4, 0, 1]

```

Применим операцию average-pooling с окном размером 2x2 и шагом 2. Мы будем скользить окном по входной матрице и вычислять среднее значение пикселей в каждом окне. Результатом будет новая матрица с уменьшенными размерами, в которой каждый элемент представляет собой среднее значение соответствующего окна.

Получим, например:

```

[ 1.0, 1.5]

[ 2.0, 1.25]

```

В этом примере, в первом окне размером 2x2, среднее значение равно 1.0. Во втором окне также 2x2, среднее значение равно 1.25. Таким образом, операция average-pooling позволяет сократить количество данных, сглаживая изображение и сохраняя его основные черты.

Роль и преимущества пулинга в CNN

Операция пулинга является важным этапом в процессе обработки изображений в сверточных нейронных сетях (CNN). Её целью является уменьшение размерности данных, что способствует сокращению объема вычислений и параметров модели. Это, в свою очередь, помогает предотвратить переобучение и улучшить обобщающую способность сети, делая её более гибкой и адаптивной к новым данным.

Одним из ключевых преимуществ операции пулинга является сохранение наиболее важных признаков изображения. Путем уменьшения размерности данных она позволяет поддерживать пространственную инвариантность и устойчивость к изменениям в позиции объектов на изображении. Это означает, что сеть может распознавать объекты, независимо от их конкретного местоположения на изображении, что является важным свойством при обработке различных изображений.

Кроме того, операция пулинга способствует повышению вычислительной эффективности и скорости обучения. За счет уменьшения размерности данных и объема вычислений CNN становится более эффективным для обработки больших объемов данных, таких как изображения высокого разрешения. Это позволяет сети быстрее обучаться и более эффективно работать с большими наборами данных, что является ключевым аспектом в области компьютерного зрения и анализа изображений.

Представим, у нас есть изображение размером 6x6 пикселей:

```

[[0, 1, 0, 2, 1, 0],

[0, 2, 1, 1, 0, 1],

[1, 0, 2, 0, 1, 2],

[2, 1, 0, 1, 2, 0],

[1, 2, 1, 0, 0, 1],

[0, 0, 1, 2, 1, 0]]

```

Предположим, мы применяем операцию Max-pooling с окном размером 2x2 и шагом 2. Это означает, что мы будем скользить окном размером 2x2 по изображению с шагом 2 и выбирать максимальное значение в каждом окне.

Результат Max-pooling будет следующим:

```

[[2, 2],

[2, 2]]

```

Здесь каждое значение является максимальным из соответствующего окна 2x2 в исходном изображении. Таким образом, мы уменьшили размерность изображения с 6x6 до 2x2, оставив только наиболее активные признаки.

Вместе свертка и пулинг образуют основу сверточных нейронных сетей, обеспечивая эффективное извлечение и агрегацию признаков из входных данных.

Глава 3. Функции активации

Поделиться:
Популярные книги

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Случайная первая. Прокурор и училка

Кистяева Марина
Первые. Случайные. Любимые
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Случайная первая. Прокурор и училка

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Контролер

Семин Никита
3. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Контролер

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Квантовый воин: сознание будущего

Кехо Джон
Религия и эзотерика:
эзотерика
6.89
рейтинг книги
Квантовый воин: сознание будущего

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров