Таинственный геном человека
Шрифт:
ХХ век стал временем поразительных достижений в астрономии. Ученые исследовали звезды, галактики и черные дыры, узнали о существовании сил, управляющих Вселенной. Столь же важными, хотя и не нашедшими такого широкого признания у общественности, были достижения химиков и биохимиков в изучении микромира атомов и молекул. Атомы в молекулах жизни соединяются между собой двумя типами связей. Один из них называется ковалентной, а второй – водородной связью. Полинг применил к силам, участвующим в формировании этих связей, принципы квантовой механики.
Перед нами не стоит задача постичь сложные математические основы прикладной физики – нам нужно понять лишь базовые механизмы. Проще всего разобраться с ними на примере знакомой всем нам молекулы воды.
Всем известно, что химическая
Водородные связи действуют по-другому. Снова возьмем для примера молекулу воды, но теперь рассмотрим взаимодействие между самими молекулами. Между молекулами, содержащими водород и более тяжелые атомы, например азот, кислород или фтор, возникают силы притяжения, более слабые и менее стабильные, чем ковалентные связи. Молекулы воды состоят из водорода и кислорода, поэтому между ними формируются водородные связи. Плотность связей между молекулами объясняет разницу между водой в газообразной (пар), жидкой и твердой (лед) форме. Когда вода находится в твердом состоянии, ее молекулы, соединенные водородными связями, формируют нечто вроде кристалла. В жидкой воде водородные связи могут соединять разное количество молекул. В паре за счет добавления дополнительной тепловой энергии водородные связи разрываются, в то время как ковалентные связи, скрепляющие атомы внутри молекул, остаются неизменными.
Итак, водородные связи слабы и нестабильны при нагревании, а на ковалентных связях оно не отражается. Такие же два типа связей присутствуют в структуре органических соединений, например белков. Кроме того, они важны и для понимания строения ДНК.
За период с 1927 по 1932 год Полинг опубликовал около 50 научных работ, в которых описывал проведенные им дифракционные исследования, совмещенные с теоретическими расчетами в области квантовой механики. Эти исследования позволили ему вывести пять правил, известных сейчас как правила Полинга и позволяющих ученым предсказывать характер связей, соединяющих атомы в молекулах. Как минимум три из этих правил были основаны на трудах Брэгга, и подобное присвоение чужих результатов повергало того в ярость. Вражда между двумя учеными была неизбежна. Труды Полинга в области химических связей были настолько необычными, что в 1954 году он удостоился Нобелевской премии. Новый уровень понимания позволил Полингу точно визуализировать форму и параметры молекул в трехмерном пространстве. В Калтехе Полинг применил свои знания вместе с технологиями рентгеновской дифракции, разработанными Брэггом, к крупным белковым молекулам. Например, он доказал, что молекула гемоглобина (предмет исследований
Первые рентгеновские изображения волокнистых белков были получены за несколько лет до этого в университете Лидса Уильямом Томасом Астбери, физиком, присутствовавшим на лекции Уилкинса в Неаполе. Именно на них строились предположения, которые Крик подвергал сомнению в Кавендишской лаборатории. В течение многих лет Полинг пытался применить квантовые расчеты к рентгенограммам Астбери, но результаты никак не сходились. Ему и двум его коллегам, Роберту Кори и Герману Брэнсону, потребовалось 14 лет, чтобы достичь желаемого прорыва.
Базовая структура всех белков строится на основе аминокислотного кода, «буквами» которого являются двадцать разных аминокислот. Химические связи, соединяющие аминокислоты в первичную цепь, называются пептидными связями. Полинг и его коллеги увидели, что пептиды соединяются между собой в двухмерной плоскости (такая связь называется плоскостной). Из-за устаревшего оборудования Астбери сделал серьезную ошибку при создании рентгенограмм: молекулы белков на них отклонились от естественных плоскостей, что затрудняло математическую экстраполяцию их структуры. Исправив ошибку Астбери, Полинг обнаружил, что по мере роста цепочки аминокислот формирующаяся базовая структура белка начинала напоминать витую пружину, закручивающуюся вправо, – так называемую альфа-спираль. Это открытие поразило Уотсона, вернувшегося из Неаполя.
В это время в Кембридже сэр Лоуренс Брэгг был крайне разочарован, что группа Полинга обошла его сотрудников и первой открыла структуру белка. Хотя у этой ситуации была и обратная сторона: Перуц использовал открытие Полинга, чтобы переоценить всю свою работу над молекулой гемоглобина. Эта переоценка в итоге помогла ему раскрыть структурную тайну гемоглобина и обеспечила получение Нобелевской премии по химии в 1963 году. Работа Полинга также заставила насторожиться Уотсона. Сразу по прибытии в Кембридж он понял, что у них с Криком имеется весьма знающий и могущественный соперник в гонке за следующим открытием – трехмерной структурой ДНК.
Как отмечал Крик в ежедневных беседах и дискуссиях с Уотсоном, их главная проблема состояла в том, что они не могли полагаться на полученные Полингом результаты. «Данные могут быть ложными. Данные могут увести тебя в неверном направлении», – говорил он. Скептически глядя на общепринятые экспериментальные данные, Уотсон и Крик попытались создать свою физическую модель. Иными словами, они полагались на существующую информацию в той же степени, что и на творческие порывы собственного воображения.
Партнеры начали задаваться вопросом, может ли ДНК, как и белки, иметь спиральную структуру. В частности, Уотсон предлагал воспользоваться методом Полинга, который любил строить трехмерные модели изучаемых молекул. Для этого, как и Полингу, им нужно было задуматься об атомной структуре ДНК и собрать своего рода сложную трехмерную головоломку из атомов и связей между ними. Ученые знали, что в состав молекулы ДНК входят четыре нуклеотида (гуанин, аденин, цитозин и тимин), а также молекула сахара рибозы и неорганическое вещество фосфат. Составив их вместе в правильном порядке, Уотсон и Крик должны были прийти к разгадке занимавшей их тайны.
Теперь перед Уотсоном и Криком стояли два важных вопроса. Во-первых, если ДНК имеет спиралевидную структуру, то какая именно спираль имеется в виду. Во-вторых, как именно в подобное строение вписывается молекула фосфата. Фосфат кальция входит в состав костей, раковин и известняка – камня, сформировавшегося из останков древних морских организмов. Присутствие фосфата указывало на укрепление цепочки ДНК, на своего рода химические «леса», или, может быть, ось. Но как она может располагаться относительно пока неизвестной нам спирали? Где и как в этой структуре появляется сахар? Сам код, очевидно, должен записываться нуклеотидами, играющими роль букв. Каждый ингредиент важен сам по себе. Но каким образом они объединялись в более или менее осмысленное целое?