Чтение онлайн

на главную - закладки

Жанры

Тайная жизнь тела. Клетка и ее скрытые возможности
Шрифт:

Другой подход к созданию молекулярных роботов заключается в изготовлении их из кристаллических материалов на основе углерода, кремния или металлов. Его реализация связана с прогрессом в уменьшении существующих твердотельных технологий (травление, напыление, выращивание кристаллов). Принципы их работы будут состоять в механическом воздействии на клеточные структуры или в создании локальных электромагнитных полей для детекции и инициирования химических изменений в биологических молекулах. Прогнозы здесь делать труднее, так как ключевые технологические процессы, необходимые для достижения наноразмеров, еще находятся на ранних этапах разработки.

Для медицинских применений перспективным может оказаться и гибридная технология для изготовления молекулярных роботов.

Например, детекторы и манипуляторы изготовляются из органических молекул, а управляющее устройство может быть твердотельным, на основе кремния.

Важной проблемой во внедрении молекулярных роботов является их взаимодействие с управляющим суперкомпьютером. Здесь перспективным представляется использование магнитного поля, поскольку биологические ткани прозрачны для него. Магнитное поле может изменять структуру робота, заряжая его энергией и сообщая информацию, а для сообщения информации управляющему компьютеру молекулярный робот может сам изменять свою структуру, что будет зарегистрировано датчиками, расположенными вне тела человека. Аналогом такого подхода является томография на основе ядерного магнитного резонанса – метод, который сейчас широко используется для получения трехмерных изображений внутренних органов в реальном времени.

Впрочем, пока все это – дело довольно отдаленного будущего.

Глава 5. Альтернатива бессмертию – крионика

Крионика – это развивающаяся наука, которая интегрирует в себе криобиологию, криогенную инженерию и практику клинической медицины и применяет их для консервации людей путем их замораживания до ультранизких (криогенных) температур с целью переноса терминальных (обреченных на смерть от старости, болезни или несчастного случая) пациентов в тот момент в будущем, когда будет доступна технология для репарации клеток и тканей и будет возможно восстановление всех функций организма и здоровья в целом, когда можно будет вылечить все сегодняшние болезни, включая старение.

Хотя крионика применяется в Америке с конца 60-х годов, она еще не стала общепринятой процедурой (на сегодняшний день заморожено около 100 человек). Тому есть несколько причин. Одна из них – финансовый крах ведущих крионических организаций в конце 70-х годов, приведший к разморозке пациентов и, как следствие, к недоверию к надежности хранения (сейчас стратегия финансирования, приведшая к этому, заменена на более надежную). Другая – глубоко укоренившаяся в общественном сознании установка, что смерть неизбежна (обычно эта установка выражается в обильной религиозной и социологической аргументации о «полезности» смерти, в психологическом желании «быть таким, как все» – т. е. таким же мертвым). Третья – то, что многие люди по-настоящему не хотят жить долго, хотя они и декларируют это, но когда от них требуется предпринять какие-либо серьезные усилия для продления жизни (и заплатить достаточно большие деньги – от 30 тысяч долларов), большинство из них предпочитает спокойно умереть. Четвертая – то, что существуют лишь теоретические обоснования работоспособности крионики. Этого достаточно для убеждения людей, обладающих необходимой научной подготовкой и имеющих сильные мотивы, чтобы потратить усилия для анализа этих обоснований, но таких людей очень и очень немного. Для убеждения же большинства нужны экспериментальные результаты, которые можно будет получить после реализации возможностей нанотехнологии. (Стоит заметить, что ведущие американские специалисты в области нанотехнологии являются сторонниками крионики, а некоторые из них имеют и контракт на замораживание.)

В крионике существуют две основные проблемы, которые могут быть решены с помощью современной науки.

Первая – по существующим законам замораживать пациентов можно только после получения свидетельства о смерти, т. е. когда врачи будут убеждены, что современная технология реанимации уже не может их спасти (это не означает, что будущая медицинская технология, усиленная молекулярными роботами, не окажется в состоянии это сделать). Обычно на это уходит от нескольких

десятков минут до нескольких часов. За это время организм получает достаточно серьезные повреждения на клеточном уровне из-за прекращения поступления кислорода. Однако теоретические оценки и ряд экспериментальных данных свидетельствуют о том, что структуры головного мозга, обеспечивающие долговременную память (а значит, целостность сознания и личности человека, его память о прошлом), за это время не успевают разрушиться. Это означает, что с точки зрения теории информации (а в медицине будущего лишь это будет настоящим критерием смерти) человек еще жив.

Другая проблема – современные технологии замораживания позволяют осуществить полный цикл замораживания-размораживания только для биологических объектов небольших размеров (несколько миллиметров). В более больших объектах как из-за неравномерного насыщения антифризом (без этого безопасное замораживание вообще невозможно), так и из-за возникающих температурных градиентов возникают многочисленные повреждения на клеточном (разрыв стенок клеток) и на тканевом (микротрещины) уровнях. Что делает простое размораживание, без предварительного исправления повреждений, невозможным.

Эти-то повреждения, а также последствия частичного разрушения клетки из-за кислородного голодания во время клинической смерти, и призваны ликвидировать молекулярные роботы (по предварительным расчетам, понадобится порядка миллиона миллиардов молекулярных роботов, их общий вес составит около полукилограмма, а время репарации-размораживания-реанимации-лечения-омоложения займет несколько месяцев). Операции MP будут примерно такими же, как и в случае антистарения. В частности, это будет означать, что после опосредованного MP размораживания и реанимации будет излечена и болезнь, явившаяся причиной смерти (например, рак или СПИД – ряд таких больных уже заморожен), затем оживший человек будет омоложен (самый старый человек был заморожен в 99 лет), более того, человек, погибший в результате несчастного случая или убитый, также может быть оживлен (так лежит замороженным адвокат, убитый недовольным его работой клиентом).

Как видим, бессмертие из области мифов и легенд становится предметом изучения науки. И хотя до реальных результатов еще далеко, последние открытия позволяют надеяться, что рано или поздно эликсир бессмертия будет найден. Правда, это вряд ли разрешит философские и нравственные проблемы человечества. Но это – тема для другой книги.

Какие еще тайны раскроет клетка?

Хотя изучение клетки человеческого тела длится уже много веков, ее основные тайны еще только предстоит раскрыть. Что заставляет клетку расти и делиться? Что (или кто) вдохнул в нее изначальную искру жизни? Если все клетки организма открыты, то в каких из них селится душа?

Это не такие риторические вопросы, как может казаться. Ведь последние исследования говорят, что у каждой клетки есть не только программа развития, предопределенная ДНК, но и собственная воля – воля сопротивляться разрушающим воздействиям или противостоять им, сохранять свою идентичность или сдаться мутогенным факторам. И пока мы не разгадаем, как именно клетка принимает решения, управлять ею будет невозможно.

Поэтому все открытия ученых, совершенные до настоящего времени, можно считать лишь подготовительным этапом перед решающим штурмом, который сможет открыть все то, что до последнего момента было тайным.

Впрочем, не зря один из мудрых сказал: «Чем больше я узнаю, тем меньше знаю». Возможно, нам достаточно будет осмыслить те факты, знанием о которых мы уже обладаем, чтобы перейти на новый уровень понимания законов жизни. А значит, торопиться не стоит…

Библиография

Берн Дж. «Y-хромосома и могущество»/Jerome Burne Y and mighty//The Guardian, 18 August 2001.

Васильев Ю. M. Социальное поведение нормальных и антисоциальное поведение опухолевых клеток // «Соросовский образовательный журнал», № 4, 5/1997.

Поделиться:
Популярные книги

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Planescape: Torment: "Пытка Вечностью"

Хесс Рисс
Фантастика:
фэнтези
5.00
рейтинг книги
Planescape: Torment: Пытка Вечностью

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

От океана до степи

Стариков Антон
3. Игра в жизнь
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
От океана до степи

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Предложение джентльмена

Куин Джулия
3. Бриджертоны
Любовные романы:
исторические любовные романы
8.90
рейтинг книги
Предложение джентльмена

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Конунг Туманного острова

Чайка Дмитрий
12. Третий Рим
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Конунг Туманного острова

Черный Маг Императора 12

Герда Александр
12. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 12

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Выбор варианта

Ром Полина
Фантастика:
фэнтези
5.50
рейтинг книги
Выбор варианта

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке