Технология хранения и обработки больших данных Hadoop

на главную - закладки

Жанры

Поделиться:

Технология хранения и обработки больших данных Hadoop

Шрифт:

Введение

Hadoop – это программная платформа с открытым исходным кодом Apache для хранения и крупномасштабной обработки больших наборов данных в распределенной среде кластеров компьютеров с использованием простых моделей программирования.

Hadoop

предназначен для масштабирования от отдельных серверов до тысяч машин, каждая из которых обеспечивает локальные вычисления и хранилище.

Фреймворк Hadoop был создан Дагом Каттингом и Майком Кафареллой в 2005 году.

Первоначально этот фреймворк был разработан для поддержки распространения проекта Nutch Search Engine построения поисковых систем.

Даг, который в то время работал в Yahoo, а сейчас является главным архитектором в Cloudera, назвал этот проект в честь слона своего сына.

Его сын назвал своего игрушечного слона Hadoop, и Даг использовал это имя, чтобы так назвать свой проект.

Давайте посмотрим, что делает фреймворк Hadoop таким интересным, масштабируемым и удобным в использовании.

Hadoop начинался как простая среда пакетной обработки.

Идея, лежащая в основе Hadoop, заключается в том, что вместо перемещения данных в вычисления мы переносим вычисления в данные.

И в основе системы Hadoop лежит масштабируемость.

Все модули в Hadoop разработаны с фундаментальным предположением о том, что аппаратное обеспечение рано или поздно выходит из строя.

То есть предположением, что отдельная машина или стойка машин, или большой кластер или суперкомпьютер, все они в какой-то момент выйдут из строя, или некоторые их компоненты выйдут из строя.

И компоненты Apache Hadoop – MapReduce и HDFS изначально были созданы на основе Google MapReduce и файловой системы Google.

Еще одна очень интересная вещь, которую приносит Hadoop, – это новый подход к данным.

Новый подход заключается в том, что мы можем сохранить все данные, которые у нас есть, и мы можем взять эти данные и читать данные, создавая схему, во время чтения.

Вместо того, чтобы тратить время на создание схемы, пытаясь подогнать данные к схеме, которую мы создали заранее, мы сохраняем все данные в приблизительном формате, а затем проецируем их в схему на лету, пока мы эти данные читаем.

Фреймворк Apache Hadoop содержит четыре основных компонента.

Это Hadoop Common, распределенная файловая система Hadoop или HDFS, Hadoop MapReduce и Hadoop YARN.

Hadoop Common содержит библиотеки и утилиты, необходимые для других модулей Hadoop.

Распределенная файловая система Hadoop хранит данные на обычном компьютере, обеспечивая очень высокую совокупную пропускную способность по всему кластеру компьютеров.

Hadoop YARN – это платформа управления ресурсами, которая отвечает за управление вычислительными ресурсами в кластере и их использование в при планировании пользователей и приложений.

И Hadoop MapReduce – это модель программирования, которая масштабирует данные

по множеству процессов.

И все модули фреймворка Hadoop разработаны с фундаментальным предположением, что аппаратное обеспечение выходит из строя.

Если вы посмотрите на HDFS, YARN, MapReduce и всю платформу в целом, она состоит из многочисленных приложений, и каждое из этих приложений создано с учетом этого предположения.

У нас есть различные приложения, такие как Apache PIG, Apache Hive, HBase и другие.

И для конечного пользователя, через Java-код MapReduce, он может получить доступ к любому из этих приложений.

И мы можем строить различного вида системы из этих приложений.

Проекты Apache PIG и Apache Hive предоставляют интерфейсы высокого уровня, обеспечивая доступ к данным через пользовательский интерфейс.

Сам фреймворк Hadoop в основном написан на языке программирования Java и проект также содержит несколько приложений на нативном языке C и утилиты командной строки.

Теперь, давайте немного поговорим о распределенной файловой системе Hadoop.

Что такое HDFS по своей сути?

Это распределенная, масштабируемая и переносимая файловая система, написанная на Java для поддержки фреймворка Hadoop.

Каждый Hadoop кластер обычно состоит из одного узла Namenode и кластера узлов Datanode, которые и формируют этот кластер.

И каждая система HDFS хранит большие файлы, как правило, в диапазоне от гигабайтов до терабайтов.

И надежность системы HDFS достигается путем репликации многочисленных хостов.

Также файловая система HTFS поддерживает так называемый вторичный узел NameNote, который регулярно подключается к первичному узлу NameNote и создает снимки его состояния, запоминая, что система сохраняет в локальных и удаленных каталогах.

В каждой системе, основанной на Hadoop, содержится какая-то версия движка MapReduce.

Типичный движок MapReduce содержит средство отслеживания работы, в которое клиентские приложения могут отправлять задания MapReduce.

И этот трекер работы передает задачи всем доступным трекерам задач, которые есть в кластере.

Таким образом, классический Hadoop MapReduce представляет собой один процесс JobTracker и произвольное количество процессов TaskTracker, или по-другому один мастер узел и множество узлов slave.

MapReduce выполняет работу над огромным набором данных, обрабатывая данные и сохраняя их в HDFS таким образом, что извлечение данных производится проще, чем в традиционном хранилище.

Комментарии:
Популярные книги

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Царевна Софья

Карнович Евгений Петрович
Всемирная история в романах
Проза:
историческая проза
6.25
рейтинг книги
Царевна Софья

Имперец. Земли Итреи

Игнатов Михаил Павлович
11. Путь
Фантастика:
героическая фантастика
боевая фантастика
5.25
рейтинг книги
Имперец. Земли Итреи

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Честное пионерское! Часть 1

Федин Андрей Анатольевич
1. Честное пионерское!
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Честное пионерское! Часть 1

Призыватель нулевого ранга

Дубов Дмитрий
1. Эпоха Гардара
Фантастика:
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая