Чтение онлайн

на главную - закладки

Жанры

Тени разума. В поисках науки о сознании
Шрифт:

Необходимо еще раз подчеркнуть, что предметом наших поисков никоим образом не должно стать простое усложнениев рамках существующей физической теории. Кто-то, например, убежден в том, что абсолютно немыслимо построить адекватную модель сложных перемещений и хитроумной химической активности соединений-нейромедиаторов, вследствие чего подробное физическое описание функционирования мозга вычислительными методами неосуществимо. Однако, говоря о невычислительном поведении, я имею в виду совсем не это. Я полностью согласен с тем, что наших познаний о совокупности биологических структур и электрохимических механизмов, отвечающей за функциональную деятельность мозга, совершенно недостаточно для сколько-нибудь серьезной попытки численного моделирования. Более того, даже если бы у нас и достало познаний, то построить рабочую модель деятельности мозга за какой-либо приемлемый промежуток времени нам все равно не удастся ввиду недостаточно высокой вычислительной мощности современных компьютеров и отсутствия соответствующей методологии программирования. Однако в принципе, объединив уже существующие представления о химии соединений-нейромедиаторов,

об обеспечивающих их перенос механизмах, о зависимости эффективности этих соединений от конкретных условий среды, биоэлектрических потенциалов, электромагнитных полей и т.д., выполнить подобное моделирование вполне возможно. Следовательно, упомянутые общие механизмы, предположительно согласующиеся с требованиями существующей физической теории, не в состоянии обеспечить той невычислимости, какой требуют вышеприведенные аргументы.

Такая вычислительная (теоретическая) модель может включать в себя и элементы хаотического поведения. Мы даже, как и в нашем прежнем обсуждении хаотических систем (см. §§1.7 , 3.10 , 3.11 , 3.22 ), не станем настаивать на том, чтобы эта модель воспроизводила бы какой-то конкретный мозг; достаточно будет и «типичного случая». При создании искусственного интеллекта вовсе не требуется моделировать интеллектуальные способности какого-то конкретного индивидуума, мы лишь стремимся (в перспективе) воспроизвести интеллектуальное поведение индивидуума типичного. (Аналогичным образом, если помните, обстоит дело и с моделированием погоды: никто не требует непременно воспроизводить данную конкретную погоду, нам нужна модель погоды вообще.) Если известны механизмы, обусловливающие поведение предлагаемой модели мозга, то эта модель (при условии, что упомянутые механизмы не находятся в противоречии с современной вычислительной физикой) опять-таки представляет собой познаваемую вычислительную систему, пусть и с какими-то явно заданными случайными элементами — этот случай также вполне укладывается в рамки представленных выше рассуждений.

Можно пойти еще дальше и потребовать, чтобы предполагаемый модельный мозг представлял собой результат развития посредством процесса, аналогичного дарвиновской эволюции, неких примитивных форм жизни, поведение которых исчерпывающе описывается известными физическими законами — или законами какой-либо иной численно-модельной физики (подобной той двумерной физике, которая действует в изобретенной Джоном Хортоном Конуэем оригинальной математической игре под названием «Жизнь» {55} ). Ничто не мешает нам вообразить, что в результате такой дарвиновской эволюции может развиться некое «сообщество роботов», подобное тому, что мы рассматривали в §§3.5 , 3.9 , 3.19 и 3.23 . Впрочем, и в этом случае мы получим целиком и полностью вычислительную систему, к которой будут применимы аргументы, представленные в §§3.14-3.21 . Для того чтобы ввести в эту вычислительную систему концепцию «-утверждения» (с тем, чтобы к ней можно было в полном объеме применить приведенную выше аргументацию), нам, помимо прочего, потребуется еще и этап «человеческого вмешательства», целью которого как раз и будет сообщить роботам строгий смысл присвоения статуса . Можно устроить так, чтобы этот этап инициировался автоматически — согласно некоторому эффективному критерию — именно в тот период времени, когда роботы начинают приобретать соответствующие коммуникационные способности. По-видимому, нет никаких препятствий к тому, чтобы объединить все эти элементы в автоматическую познаваемую вычислительную систему (в том смысле, что познаваемыми являются лежащие в ее основе механизмы, пусть даже мы пока не можем практически выполнить необходимые вычисления ни на одном из современных или ожидаемых в обозримом будущем компьютеров). Как и прежде, противоречие выводится из предположения, что такая система может достичь уровня человеческого математического понимания, достаточного для восприятия теоремы Гёделя.

Следующее часто высказываемое возражение касается уместности применения к вопросам человеческой психологии математических доказательств, подобных тем, на которые я опираюсь в своем исследовании, — никакая умственная деятельность не бывает настолько точна, чтобы ее таким образом анализировать. Придерживающиеся подобных взглядов люди, очевидно, полагают, что никакие частные доказательства, описывающие математическую природу физических феноменов, которые, возможно, обусловливают функционирование нашего мозга, не могут иметь непосредственного отношения к пониманию деятельности человеческого разума. Они согласны с тем, что поведение человека действительно «невычислимо», однако полагают, что эта невычислимость является всего-навсего отражением общей неприменимости математических и физических соображений к вопросам человеческой психологии. Они утверждают — и не без оснований, — что гораздо уместнее в этом смысле исследовать чрезвычайно сложную организацию нашего мозга, равно как и наших общественных и образовательных структур, нежели какие-то конкретные физические феномены, волею случая ответственные за отдельные физические процессы, посредством которых реализуются те или иные функции человеческого мозга.

Не следует, однако, забывать и о том, что одна лишь сложность системы никоим образом не избавляет нас от необходимости всесторонне исследовать следствия из обусловливающих ее функционирование физических законов. Возьмем, к примеру, спортсмена, который, безусловно, представляет собой необычайно сложную физическую систему, — руководствуясь изложенными в предыдущем абзаце соображениями, мы имели бы полное право заключить, что точное знание о работающих в данной системе физических законах никоим образом не сможет повлиять на спортивные достижения этого самого спортсмена. Нам, впрочем, известно, что это далеко не так. Универсальные физические принципы сохранения энергии, импульса,

момента импульса, равно как и законы тяготения, оказывают одинаково непреклонное действие как на спортсмена целиком, так и на отдельные частицы, составляющие его тело. Необходимость этого факта обусловлена самой природой тех конкретных принципов, которые волею случая управляют данной конкретной вселенной. Будь эти принципы хотя бы немного иными (или существенно иными, как, например, в конуэевской игре «Жизнь»), законы, определяющие поведение системы того же порядка сложности, что и система «спортсмен», вполне могли бы оказаться совершенноотличными от тех, к каким мы привыкли. То же можно сказать и о работе наших внутренних органов (например, сердца), и о точной природе химических процессов, посредством которых реализуются всевозможные биологические функции. Аналогичным образом, следует ожидать, что мельчайшие тонкости тех законов, которые лежат в основе функционирования мозга, будут играть чрезвычайно важную роль в управлении, возможно, наивысшими из проявлений человеческого интеллекта.

Впрочем, даже согласившись со всем вышеизложенным, можно все же возразить, что тот конкретный тип умственной деятельности, о котором я, по большей части, говорю на этих страницах, т.е. макроскопическое («высокоуровневое») интеллектуальное поведение математиков-людей, вряд ли может сообщить нам что-нибудь существенное об обусловливающих его тонких физических процессах. Что ни говори, а «гёделевский» метод рассуждения предполагает строго рациональное отношение индивидуума к собственной системе «неопровержимых» математических убеждений, тогда как, в общем случае, поведение человеческого существа едва ли можно отнести к требуемому строго рациональному типу. В качестве примера приведу один из результатов некоей серии психологических экспериментов {56} , который показывает, насколько иррациональными могут быть ответы человека на простой вопрос. Например, на такой:

«Если все A суть B, а некоторые B суть C, то обязательно ли отсюда следует, что некоторые A суть C?».

На этот и подобные вопросы большинство студентов колледжа дают неверный (т.е. утвердительный) ответ. Если самые обычные студенты настолько в своем мышлении нелогичны, то как же нам удастся вывести хоть что-то существенное из гораздо более хитроумных рассуждений гёделевского типа. Даже опытные математики нередко бывают небрежны в своих рассуждениях, что же касается необходимой для гёделевского контрдоказательства последовательности выражения мысли, то такое, напротив, встречается далеко не так часто, как хотелось бы.

Следует, впрочем, понимать, что ошибки, подобные тем, что допускали в вышеупомянутых экспериментах студенты, не имеют ничего общего с главным предметом настоящего исследования. Такие ошибки принадлежат к категории «исправимых ошибок» — сами же студенты, несомненно, признают, что они ошиблись, если им на эти ошибки указать (и, при необходимости, доходчиво разъяснить их природу). Исправимые ошибки мы в данном контексте не рассматриваем вовсе; см., в частности, комментарий к возражению Q13, а также §§3.12 , 3.17 . Исследование ошибок, которым порой подвержены люди, безусловно имеет огромное значение для психологии, психиатрии и физиологии, однако меня здесь интересуют совсем другое — а именно, то, что человек может воспринять в принципе, используя свои понимание, интуицию и способность к умозаключениям. Как выяснилось, связанные с этим вопросы весьма тонки, хотя тонкость их сразу в глаза не бросается. Поначалу такие вопросы выглядят тривиальными; действительно, корректное рассуждение есть корректное рассуждение, с какой стороны его ни разглядывай, — всего лишь нечто более или менее очевидное, причем все методы такого рассуждения разложил по полочкам еще Аристотель 2300 лет назад (ну а если не он, то английский математик и логик Джордж Буль в 1854 году вкупе с многочисленными последователями). И все же приходится признать, что понятие «корректного рассуждения» таит в себе неизмеримые глубины и совершенно не укладывается в рамки вычислительных операций, что, в сущности, и показали Гёдель с Тьюрингом. В недавнем прошлом эти вопросы рассматривались как прерогатива скорее математики, чем психологии, присущие же им тонкости психологов в общем случае не интересовали. Однако, как мы могли убедиться, только так можно получить хоть какую-то информацию о физических процессах, которые в конечном счете и обусловливают осознание и понимание.

Исследование упомянутых материй, помимо прочего, неизбежно затронет и глубинные вопросы философии математики. Происходит ли при математическом понимании своего рода контакт с Платоновой математической реальностью, существующей независимо от человека и вне времени; или каждый из нас в процессе прохождения этапов логического умозаключения самостоятельно воссоздает все математические концепции? Почему физические законы, как нам представляется, столь неукоснительно следуют полученным таким образом точным и тонким математическим описаниям? Какое отношение имеет собственно физическая реальность к упомянутой концепции Платоновой идеальной математической реальности? И, кроме того, если наше восприятие в силу своей природы действительно обусловлено некоей точной и тонкой математической подструктурой, на которую опираются те самые законы, что регулируют функциональную деятельность нашего мозга, то что мы можем узнать о том, как работает наше восприятие математики — как вообще работает наше восприятие чего бы то ни было, — если нам удастся глубже понять упомянутые физические законы?

В конечном счете, все наши усилия сводятся к поискам ответов именно на эти вопросы, и к этим же вопросам нам еще предстоит вернуться в конце второй части.

Часть II

Новая физика, необходимая для понимания разума

В поисках невычислительной физики разума

4. Есть ли в классической физике место разуму?

4.1. Разум и физические законы

Поделиться:
Популярные книги

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Я граф. Книга XII

Дрейк Сириус
12. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я граф. Книга XII

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Предопределение

Осадчук Алексей Витальевич
9. Последняя жизнь
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Предопределение

Убивать чтобы жить 7

Бор Жорж
7. УЧЖ
Фантастика:
героическая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 7

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша