Чтение онлайн

на главную - закладки

Жанры

Теоретическая география

Вотяков Анатолий Александрович

Шрифт:

Хотя опыт с металлической оболочкой в принципе реализуем, вряд ли у кого возникают сомнения в том, что его следует осуществлять, потому что создать горные системы таким образом невозможно. Мы далеки от мысли воспользоваться этими неудачами, чтобы сделать вывод: раз учёные-физики не могут, пользуясь имеющимся у них сознанием и техническими достижениями эпохи, воспроизвести хоть что-нибудь напоминающее горные хребты, то горные системы Земли — продукт деятельности Высшего Разума, цели и методы Которого нам не дано понять. Напротив, мы уверены, что горные системы — это продукт бессмысленного «творчества» каких-то стихийных процессов, хорошо нам знакомых, но которые никто и никогда не рассматривал

как возможный механизм горообразования на Земле.

Нужного вида складки возникают на поверхности металла, когда его пытаются сломать. Возьмите к примеру обычный гвоздь и начните его сгибать-разгибать в одном и том же месте. Через какое-то время на его поверхности появятся складки и вскоре он сломается, так как одно из образовавшихся ущелий распространится по всему сечению гвоздя.

Итак, мы нащупали основную модель геомеханики: горные хребты — это следствие бессмысленного закачивания огромных порций механической энергии, вызывающей сильное внутреннее напряжение земной коры. Порождаемые этими напряжениями усталостные деформации приводят к образованию горных хребтов, располагающихся в основном параллельно «линии сгибания».

Если бы земная кора была идеально однородной, то остаточные напряжения формировали бы чисто фрактальные системы горных хребтов, как результат игры «великого господина случая». Но поверхностные области земной коры имеют явно выраженную слоистость — результат накопления осадков и жизнедеятельности микроорганизмов, поэтому при несомненной фрактальности в малых окрестностях, структура хребтов частично упорядочивается, как бы учитывая особенности залегания более древних слоёв.

Кривизна литосферы.

Воспользуемся упрощённой моделью земной поверхности, согласно которой Земля имеет вид сплюснутого эллипсоида

(x/Re) 2 + (y/Re) 2 + (z/Rp) 2 = 1.

Кривизна гладкой трёхмерной поверхности выражается через кривизну линии. Нас будет далее интересовать только тот случай, когда линия задана параметрически x = j(t); y = y(t). В этом случае кривизна линии вычисляется по формуле

k = 1/R = (x'y' - y'x')/(x' 2 + y' 2)3/2.

Гениальный математик всех времён и народов Леонард Эйлер показал, что нормальная кривизна линии, проходящей через точку поверхности зависит от её направления; существуют два перпендикулярных направления, называемых главными, характеризующиеся двумя экстремальными значениями кривизны: максимальным и минимальным, называемые главными. Нормальная кривизна произвольной линии, проходящей по поверхности удовлетворяет уравнению Эйлера

k = k1 cos2j + k2 sin2j ,

где j — угол, образуемый линией с главным направлением для кривизны k1.

Ввиду симметрии эллипсоида вращения (он переходит сам в себя при отражении зеркале, когда плоскость зеркала проходит через ось вращения) одно из главных направлений проходит в направлении меридиана, следовательно, другое проходит перпендикулярно ему. Теперь мы можем вычислить кривизну литосферы в любой её точке. Полагая у = 0, получаем эллипс, проходящий в меридианальном направлении

x = Re sinq,

z = Rp cosq.

Пользуясь

формулой для вычисления кривизны, получаем

R1(q) = (Re2sin2q + Rp2cos2q) 3/2/RpRe.

Эта формула небезынтересна. До этого мы, не задумываясь, полагали, что Rp — это радиус кривизны Земли в районе полюса, но в действительности это не так; Rp = 6356863 метров — это всего только расстояние от полюса до центра Земли, тогда как радиус кривизны следует вычислить, полагая в R1(q) величину q = 90o

R1(90o)= (Re) 2/Rp = 6399699 метров,

соответственно, на экваторе

R1(0o)= (Rp) 2/Re = 6335552 метров.

Для вычисления второго радиуса кривизны нам следует рассмотреть эллипсоид, возникающий при пересечении поверхности Земли плоскостью, проходящей перпендикулярно Гринвичскому меридиану, но для упрощения выкладок мы заменим её на ближайшую к ней плоскость, проходящую через центр Земли. Получающийся в этом случае эллипс

y = Re siny,

z = Rq cosy,

где Rq2 = (Re sinq) 2 + (Rp cosq) 2, подобен тому, который мы только что рассматривали (в новом эллипсе Rq играет роль Rp, а y — играет роль q), благодаря этому мы можем записать

R2(y) = (Re2sin2y + Rq2cos2y) 3/2/RqRe.

Нас будет далее интересовать только один радиус кривизны на этом эллипсе — R2(0), который является фактически вторым главным радиусом R2(q)

R2(q)= (Rq) 2/Re.

Радиус второй главной кривизны изменяется от (Rp) 2/Re = 6335552 метров, на полюсе, до (Re) 2/Re = 6378245 метров, на экваторе, то есть полюс — это наиболее плоская точка литосферы (R1 = R2 = 6399,699 км), а экватор, наоборот, зона в которой литосфера сильнее всего искривлена (R1 = 6335,552 км; R2 = 6378,245 км), поэтому при проходе зон, расположенных недалеко от полюса, через экватор в твёрдом объёме литосферы возникают огромные объёмные напряжения, производящие объёмные деформации, внутренние разрывы, о чём мы и будем далее говорить.

Поделиться:
Популярные книги

Глинглокский лев. (Трилогия)

Степной Аркадий
90. В одном томе
Фантастика:
фэнтези
9.18
рейтинг книги
Глинглокский лев. (Трилогия)

В осаде

Кетлинская Вера Казимировна
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
В осаде

Смерть любит танцы

Klara Клара
1. Танцы
Фантастика:
фэнтези
8.96
рейтинг книги
Смерть любит танцы

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Сочинения в двух томах. том 1

Фаррер Клод
Приключения:
исторические приключения
прочие приключения
5.00
рейтинг книги
Сочинения в двух томах. том 1

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Божья коровка 2

Дроздов Анатолий Федорович
2. Божья коровка
Фантастика:
альтернативная история
5.00
рейтинг книги
Божья коровка 2

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Фея любви. Трилогия

Николаева Мария Сергеевна
141. В одном томе
Фантастика:
фэнтези
8.55
рейтинг книги
Фея любви. Трилогия

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3