Чтение онлайн

на главную - закладки

Жанры

Теория игр в комиксах
Шрифт:

В ситуации равновесия обе студии выпустили бы фильмы в декабре. Это единственный исход, при котором оптимальные стратегии обеих студий позволяют достичь наилучших результатов.

Одной из характеристик равновесия Нэша является отсутствие сожаления у каждого из игроков. Отказ от стратегии равновесия, подразумевающей выпуск фильмов в декабре, не принес бы ни одной из студий никакой выгоды. Равновесие Нэша также является и равновесием рациональных ожиданий. В такой ситуации Rabbit films выпускает

фильм в прокат в декабре, ожидая, что Weasel Studios собирается выпускать фильм в прокат в декабре. И действительно, Weasel Studios назначает релиз на декабрь. Соответственно, ожидания правильны.

«Дилемма заключенных»

«Дилемма заключенных» – это самый известный парадокс во всей теории игр. Такое название этой дилемме дал канадский математик Альберт Такер (1905–1995). Эта игра профессора Такера очень похожа на голливудскую криминальную драму, в которой каждому из двух заключенных предлагают сделку о сотрудничестве с правосудием в обмен на донос о другом заключенном. Эта дилемма наглядно показывает, как трудно может быть действовать сообща для общего блага, если люди преследуют свои личные интересы.

Стимулы, которые мы наблюдаем в «Дилемме заключенных», достаточно часто встречаются и используются учеными при анализе задач в самых разнообразных областях науки, например конкуренция компаний в экономике, общественные нормы в социологии, механизмы принятия решения в психологии, борьба животных за скудные ресурсы в биологии или борьба компьютеров за канал передачи данных.

Алан и Бен угнали машину, но их вскоре поймали. Полицейские подозревают, что до того, как их арестовали, они сбили человека и скрылись с места преступления, но у следствия нет улик, прямо указывающих на их вину. Допрос преступников ведется в разных комнатах.

И у Алана, и у Бена есть два варианта действий: они могут сохранять молчание, а могут признаться. Соответственно, существует четыре возможных исхода этой игры:

Алан сохраняет молчание, и Бен сохраняет молчание;

Алан признается, и Бен сохраняет молчание;

Алан сохраняет молчание, и Бен признается;

Алан признается, и Бен признается.

«Дилемма заключенных» может быть представлена в стратегической форме, при которой каждый ряд матрицы представлял бы возможный выбор Алана, а каждая колонка – возможный выбор Бена. На пересечениях каждого ряда и колонки мы обозначим выигрыши каждого игрока: в данном случае это будет срок заключения.

Если Алан и Бен сохранят молчание, то оба получат срок в один год за угон автомобиля. Это отрицательный расклад, поэтому их выигрыши также в минусе (Алан: –1, Бен: –1). Если оба преступника сознаются, каждый сядет в тюрьму на 10 лет (А – 10, Б – 10).

Заключенные понимают, как работает эта матрица, и знают, что имеют дело с одной и той же матрицей.

Это пример игры с одновременными

ходами. Даже если заключенные не принимают решения синхронно, мы все равно можем назвать их одновременными, потому что игроки находятся в разных комнатах и ни один из них в момент принятия своего решения не знает, как будет действовать другой.

Однако заметьте, что, воспринимая эту дилемму как игру в стратегической форме, мы не говорим о возможном исходе. Мы просто обозначаем все потенциально возможные итоги, будь они разумны или нет, и записываем выигрыши, которые игроки получили бы, если бы место имел именно такой исход.

Теперь, когда мы записали нашу задачу в стратегической форме, мы можем приступить к анализу возможного результата.

Очевидно, если бы Алан и Бен вместе придумали бы свою версию произошедшего, они смогли бы сохранить молчание и попали бы в тюрьму всего на один год.

Но этот вариант не входит в систему равновесия. Для Алана стратегия «сознаться» строго доминирует над стратегией «молчать»: всегда лучше сознаться, несмотря на его ожидания относительно действий Бена.

Точно так же и для Бена оптимальной стратегией было бы признание, вне зависимости от его ожиданий относительно действий Алана.

В ситуации равновесия Нэша в данной дилемме оба заключенных признаются. Стандартный способ записи этого исхода таков:

{признание, признание}

Это значит, что игрок, чьи выигрыши записаны в матрице в строку (Алан), сделал выбор в пользу признания, как и игрок, чьи выигрыши записаны в колонку (Бен). В равновесии оба заключенных получают по 10 лет тюремного срока.

Эффективность по Парето

Интересно, можно ли сказать, что равновесие Нэша в «Дилемме заключенных» Парето-эффективно? Исход игры можно назвать Парето-эффективным, если больше не существует ни одного возможного исхода, при котором один участник находился бы в лучших условиях, а другой – в худших. Это понятие распределительной эффективности названо в честь итальянского экономиста Вильфредо Парето (1848–1923).

Нэш-равновесный исход «Дилеммы заключенных» не Парето-эффективен, потому что каждый заключенный извлек бы большую выгоду, если бы оба промолчали, отсюда и прозвище «Дилемма заключенных».

Тем не менее во многих других играх равновесие Нэша Парето-эффективно. К примеру, в игре про киностудии не существует исхода, альтернативного Нэш-равновесному исходу, который приносит пользу одной студии, не вредя другой.

Проектирование сетей

Стимулы, представленные в «Дилемме заключенных», основываются на различных ситуациях. Действительно, как только один человек начинает смотреть на мир через такую призму этой дилеммы, трудно не начать замечать ее повсюду.

К примеру, когда беспроводные сетевые передатчики, такие как Wi-Fi-роутеры или вышки сотовой связи, используют одну и ту же частоту, их зоны покрытия накладываются, их взаимодействие нарушается и замедляется скорость работы.

Поделиться:
Популярные книги

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Гарем на шагоходе. Том 1

Гремлинов Гриша
1. Волк и его волчицы
Фантастика:
боевая фантастика
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Гарем на шагоходе. Том 1

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Чехов

Гоблин (MeXXanik)
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
5.00
рейтинг книги
Чехов

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5