Чтение онлайн

на главную - закладки

Жанры

Теория пределов и нейросети. Практикум
Шрифт:

Если возникнут ещё вопросы или нужно что-то ещё разъяснить, обращайтесь!

3) f(x) = 2x/(x^2 – 4) – 1/(x – 2) при x стремящейся к 2.

GPTutor

Функция ( f(x) = \frac{2x}{x^2 – 4} – \frac{1}{x – 2} ) при ( x ) стремящемся к 2 можно проанализировать на предмет её поведения в окрестности точки ( x = 2 ).

Сначала проверим знаменатель дроби ( \frac{1}{x – 2} ). При ( x \to 2 ), знаменатель стремится к 0,

что может привести к бесконечности, если числитель не стремится к 0.

Разложим числитель и знаменатель на множители:

[ f(x) = \frac{2x}{(x-2)(x+2)} – \frac{1}{x-2} ]

Теперь рассмотрим предел при ( x \to 2 ):

[ \lim_{{x \to 2}} f(x) = \lim_{{x \to 2}} \left( \frac{2x}{(x-2)(x+2)} – \frac{1}{x-2} \right) ]

Здесь числитель и знаменатель первого слагаемого оба стремятся к 0 при ( x \to 2 ), что создаёт неопределённость типа ( \frac{0}{0} ). Используем правило Лопиталя:

[ \lim_{{x \to 2}} f(x) = \lim_{{x \to 2}} \frac{\frac{d}{dx}[2x]}{\frac{d}{dx}[(x-2)(x+2)]} – \lim_{{x \to 2}} \frac{\frac{d}{dx}[1]}{\frac{d}{dx}[(x-2)]} ]

Вычислим производные:

[ \lim_{{x \to 2}} f(x) = \lim_{{x \to 2}} \frac{2}{2x} – \lim_{{x \to 2}} \frac{-1}{(x-2)^2} ]

Подставляем ( x = 2 ):

[ \lim_{{x \to 2}} f(x) = \frac{2}{4} – \frac{-1}{0^2} ]

[ \lim_{{x \to 2}} f(x) = \frac{1}{2} + \infty ]

Таким образом, предел функции ( f(x) ) при ( x \to 2 ) равен ( \infty ).

Если у вас есть ещё вопросы или нужно что-то ещё разъяснить, пожалуйста, дайте знать!

Глава 3

11. Найти предел функции f(x) = (2x^3 + x^2 – 5)/( x^3 + x – 1) при x стремящемся к бесконечности.

ChatGPT

Для нахождения предела функции при x стремящемся к бесконечности можно разделить каждое слагаемое на x^3 и применить правило Лопиталя для бесконечностей.

f(x) = (2x^3 + x^2 – 5)/( x^3 + x – 1) = (2 + 1/x – 5/x^3)/(1 + 1/x^2 – 1/x^3)

Теперь применяем правило Лопиталя:

lim (x->?) (2 + 1/x – 5/x^3)/(1 + 1/x^2 – 1/x^3)

= lim (x->?) (0 – 15/x^4)/(0 – 3/x^4)

= lim (x->?) 5

Таким образом, предел функции f(x) при x стремящемся к бесконечности равен 5.

GPTutor

Чтобы найти предел (\lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – \frac{5}{x^3}}}{{1 + \frac{1}{x^2} – \frac{1}{x^3}}}), давайте разложим числитель и знаменатель в ряды Тейлора до необходимой степени, когда ( x \to \infty ).

Числитель:[ 2 + \frac{1}{x} – \frac{5}{x^3} ]

Разложим первые члены в ряд Тейлора:

[ 2 + \frac{1}{x} – \frac{5}{x^3} = 2 + \frac{1}{x} – 5 \cdot \frac{1}{x^3} + O\left(\frac{1}{x^4}\right) ]

Знаменатель:[ 1 + \frac{1}{x^2} – \frac{1}{x^3} ]

Разложим

первые члены в ряд Тейлора:

[ 1 + \frac{1}{x^2} – \frac{1}{x^3} = 1 + \frac{1}{x^2} – \frac{1}{x^3} + O\left(\frac{1}{x^4}\right) ]

Теперь подставим эти разложения в исходное выражение:

[ \lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – \frac{5}{x^3}}}{{1 + \frac{1}{x^2} – \frac{1}{x^3}}} = \lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – 5 \cdot \frac{1}{x^3} + O\left(\frac{1}{x^4}\right)}}{{1 + \frac{1}{x^2} – \frac{1}{x^3} + O\left(\frac{1}{x^4}\right)}} ]

Теперь выделим основные члены в числителе и знаменателе:

[ = \lim_{{x \to \infty}} \frac{{2 + \frac{1}{x}}}{{1}} = \lim_{{x \to \infty}} \left(2 + \frac{1}{x}\right) ]

Поскольку ( \lim_{{x \to \infty}} \frac{1}{x} = 0 ), то предел равен:[ = 2 ]

Таким образом, (\lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – \frac{5}{x^3}}}{{1 + \frac{1}{x^2} – \frac{1}{x^3}}} = 2 ).

Выводы:

Работа над ошибками.

Маша

Применяем правило Лопиталя:lim (x->?) (2 + 1/x – 5/x^3)/(1 + 1/x^2 – 1/x^3)

Чтобы найти предел[\lim_{x \to \infty} \frac{2 + \frac{1}{x} – \frac{5}{x^3}}{1 + \frac{1}{x^2} – \frac{1}{x^3}}]с помощью правила Лопиталя, проверим, что предел имеет форму (\frac{\infty}{\infty}):

Числитель: (2 + \frac{1}{x} – \frac{5}{x^3} \to 2)

Знаменатель: (1 + \frac{1}{x^2} – \frac{1}{x^3} \to 1)

В данном случае предел не имеет формы (\frac{\infty}{\infty}), поскольку при (x \to \infty) числитель стремится к 2, а знаменатель к 1. Таким образом, можно сразу подставить значение:

[\frac{2 + 0 – 0}{1 + 0 – 0} = \frac{2}{1} = 2]

Следовательно,

[\lim_{x \to \infty} \frac{2 + \frac{1}{x} – \frac{5}{x^3}}{1 + \frac{1}{x^2} – \frac{1}{x^3}} = 2]

Найти производную (1/x – 5/x^3 + 1/x^2 – 1/x^3)

Чтобы найти производную функции [f(x) = \frac{1}{x} – \frac{5}{x^3} + \frac{1}{x^2} – \frac{1}{x^3}]

, можно преобразовать ее в более удобный вид и применить правило производной:

[f(x) = x^{-1} – 5x^{-3} + x^{-2} – x^{-3}]

Теперь найдем производную каждого члена:

( \frac{d}{dx}(x^{-1}) = -x^{-2} )

( \frac{d}{dx}(-5x^{-3}) = 15x^{-4} )

( \frac{d}{dx}(x^{-2}) = -2x^{-3} )

( \frac{d}{dx}(-x^{-3}) = 3x^{-4} )

GPTutor

Чтобы найти предел функции ( f(x) = \frac{2x^3 + x^2 – 5}{x^3 + x – 1} ) при ( x \to \infty ), мы будем анализировать поведение выражений в числителе и знаменателе.

Конец ознакомительного фрагмента.

Поделиться:
Популярные книги

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Идеальный мир для Лекаря 29

Сапфир Олег
29. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 29

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Секреты серой Мыши

Страйк Кира
Любовные романы:
любовно-фантастические романы
6.60
рейтинг книги
Секреты серой Мыши

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Лютая

Шёпот Светлана Богдановна
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Лютая

Призван, чтобы защитить?

Кириллов Сергей
2. Призван, чтобы умереть?
Фантастика:
фэнтези
рпг
7.00
рейтинг книги
Призван, чтобы защитить?

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Злыднев Мир. Дилогия

Чекрыгин Егор
Злыднев мир
Фантастика:
фэнтези
7.67
рейтинг книги
Злыднев Мир. Дилогия