Теория струн и скрытые измерения вселенной
Шрифт:
Итак, по крайней мере, на текущий момент, оказалось, что все дороги проходят через многообразия Калаби-Яу. Извлечь подлинную физику и космологию из теории струн и М-теории невозможно без знания геометрии этих пространств, содержащих в себе «генетический код Вселенной» — генеральный план строительства мира. Именно по этой причине стэнфордский физик Леонард Сасскинд, один из основателей теории струн, утверждает, что многообразия Калаби-Яу представляют собой нечто большее, чем просто вспомогательную структуру или строительные леса теории. «Они — это ДНК теории струн», — говорит он.
Седьмая глава
В Зазеркалье
Несмотря на то что многообразия Калаби-Яу произвели в физике подлинный взрыв, этот взрыв чуть было не обратился во всхлип[82],
На сегодняшний день этот простой план все еще находится на стадии реализации. Прогресс застопорился еще двадцать лет назад; тогда же иссяк энтузиазм ученых, и поползли неизбежные сомнения. В конце 1980-х годов многие физики считали, что попытка использования многообразий Калаби-Яу в физике потерпела поражение. Например, физик Пол Эспинволл, на данный момент работающий в Университете Дьюка, вскоре после защиты диссертации в Оксфорде обнаружил, что найти работу и получить гранты для исследования многообразий Калаби-Яу и теории струн стало весьма непросто. Разочаровавшиеся в теории студенты, в том числе и два бывших однокурсника и соавтора Брайана Грина из Оксфордского университета, начали покидать физику ради того, чтобы стать финансистами. Те, кто остался, подобно Грину, были вынуждены отбиваться от обвинений в желании «заниматься вычислениями ради вычислений — математикой под видом физики».[84]
Возможно, это и правда. Но, учитывая, что Грин и Плессер вскорости внесли важнейший вклад в область зеркальной симметрии, который дал вторую жизнь сонному царству многообразий Калаби-Яу и восстановил в правах подзабытую на то время область геометрии, я должен выразить им свою огромную признательность за то, что они предпочли продолжение исследований торговле ценными бумагами. Однако перед тем, как наступил этот подъем, доверие к многообразиям упало до такого минимума, что, по крайней мере, некоторое время казалось, будто их история закончилась.
Первые тревожные признаки появились, когда теория струн в своем развитии натолкнулась на понятие конформной инвариантности. Струна, движущаяся через пространство-время, заметает поверхность с двумя вещественными измерениями (одним пространственным и одним временным) и одним комплексным — так называемый мировой лист. Если струна имеет форму петли, то мировой лист представляет собой вытянутую многомерную трубку, или, точнее, комплексную риманову поверхность без границы; в случае же незамкнутой струны в роли мирового листа будет выступать бесконечная лента — комплексная риманова поверхность, имеющая границу. В струнной теории мы исследуем все возможные колебания струн, которые определяются физическим принципом — принципом наименьшего действия, зависящим от конформной структуры мирового листа — внутреннего свойства римановых поверхностей. Таким образом, конформная инвариантность изначально встроена в теорию струн. Кроме того, теория струн обладает масштабной инвариантностью, а это означает, что умножение расстояний на произвольную постоянную не изменяет отношений между точками. Итак, можно изменять поверхность — накачивать ее воздухом подобно воздушному шару или сжимать ее, выпуская накачанный воздух, растягивать ее любыми другими путями, меняя форму или расстояние между точками, — не затрагивая при этом чего-либо существенного с точки зрения теории струн.
Проблемы возникают, когда требование конформной инвариантности выдвигается в рамках квантовых представлений. Подобно тому как классическая частица движется по геодезической линии — траектории, соответствующей минимальному четырехмерному пространственно-временному расстоянию между двумя точками, как предсказывает принцип наименьшего действия, о котором шла речь в третьей главе, классическая струна также движется по траектории, длина которой минимальна. В результате этого мировой лист, образованный
Квантовая интерпретация данной теории поля учитывает не только наиболее существенные особенности движения струны в пространстве-времени и поверхности, заметаемой данной струной, но также и некоторые более мелкие детали, обусловленные колебаниями струны в процессе движения. В результате мировой лист будет иметь небольшие особенности, отражающие эти колебания. В квантовой механике частица или струна, движущаяся в пространстве-времени, движется одновременно по всем возможным траекториям. Вместо того чтобы просто выбрать один мировой лист, обладающий минимальной поверхностью, квантовая теория поля рассматривает средневзвешенное значение всех возможных конфигураций мирового листа, и большое значение в ее уравнениях отведено поверхности с меньшей площадью.
Вопрос состоит в том, будет ли теория двухмерного квантового поля после усреднения, проведенного путем интегрирования по всем возможным геометриям мирового листа, по-прежнему удовлетворять условию масштабной инвариантности и другим аспектам конформности? Ответ на этот вопрос зависит от метрики пространства, в котором находится мировой лист; для одних метрик теория поля является конформной, для других — нет.
Для того чтобы определить, поддерживается или нет масштабная инвариантость конкретной метрикой, рассчитывается так называемая бета-функция, определяющая отклонение теории от конформности. Если значение бета-функции равно нулю, то при деформации мирового листа — раздувании, растяжении или сжатии — ничего не изменяется, что говорит о конформности теории. Бета-функция автоматически обращается в нуль в случае риччи-плоской метрики подобной той, которой обладают пространства Калаби-Яу. К сожалению, как и в случае многих обсуждавшихся ранее сложных уравнений, решение уравнения для бета-функции в явном виде найти невозможно. Вместо этого было найдено приближенное решение путем аппроксимации искомой функции суммой бесконечного числа слагаемых — так называемым степенным рядом. Считается, что чем больше членов ряда задействовано в аппроксимации, тем она лучше.
Чтобы лучше понять, как это работает, представьте, что вы хотите измерить площадь поверхности сферы, заворачивая ее в проволочную сетку. Если проволока состоит только из одной петли, то, натянув ее на сферу, вы едва ли получите хорошую оценку для площади. Однако если взять не одну, а четыре треугольные петли, соединенные в форме тетраэдра, охватывающего сферу, аппроксимация будет гораздо лучше. Увеличение числа петель до двенадцати — в форме пятиугольников, соединенных в додекаэдр, или до двадцати — в форме треугольников, соединенных в икосаэдр, даст еще более точные оценки. Как и в нашем примере, слагаемые степенного ряда бета-функции также носят название петель. Взяв только первое слагаемое ряда, вы получите однопетлевую бета-функцию, взяв первые два — двухпетлевую и т. д.
Добавление новых петель к проволочной сетке приводит к следующей проблеме: расчеты бета-функции, которые и без того чрезвычайно сложны, при возрастании числа петель становятся еще сложнее, и объем вычислений многократно возрастает. Расчеты показали, что первые три слагаемых степенного ряда, как и было предсказано ранее, равны нулю — что весьма обнадежило физиков. Однако в статье 1986 года Маркус Грисару, физик, в настоящее время работающий в Университете Макгилла, и двое его коллег, Антон ван де Вен и Даниэла Занон, обнаружили, что четырехпетлевая бета-функция в нуль не обращается. Последовавший за этим расчет, выполненный Грисару и его коллегами, показал, что пятипетлевая бета-функция тоже не равна нулю. Это открытие стало заметным ударом по позициям, занимаемым в физике многообразиями Калаби-Яу, поскольку из него следовало, что метрика данных многообразий не приводит к сохранению конформной инвариантности.