Чтение онлайн

на главную - закладки

Жанры

Теория струн и скрытые измерения Вселенной
Шрифт:

Добавим еще одно комплексное измерение, превратив рассматриваемое многообразие в трехмерное многообразие Калаби-Яу. Пространство Втеперь превратится в трехмерную сферу (трехмерную поверхность мы изобразить не в состоянии), а ее подпространства – в трехмерные бублики. В этом случае набор «плохих» точек, соответствующих сингулярным бубликам, приходится на линейные сегменты, связанные друг с другом подобием сети. «Все точки линейного сегмента являются “плохими” [или сингулярными], однако те из них, которые лежат в вершинах сети, в местах пересечения сразу трех линейных сегментов, являются совсем плохими», – говорит Гросс. Эти точки, в свою очередь, соответствуют наиболее искаженным бубликам.[113]

Рис. 7.9.Гипотеза SYZ, названная в честь ее авторов, Эндрю Строминджера, автора данной книги (Шинтана Яу) и Эрика

Заслоу, предлагает способ разложения сложного пространства, такого как многообразие Калаби-Яу, на составные части, или подмногообразия. Хотя мы не в силах изобразить шестимерное многообразие Калаби-Яу, вместо этого мы можем нарисовать двухмерное (имеющее два вещественных измерения) пространство Калаби-Яу, представляющее собой бублик с плоской метрикой. Подмногообразия, образующие бублик, являются окружностями, и их порядок определяется вспомогательным пространством В, также представляющим собой окружность. Каждая точка на В соответствует определенной окружности; и все многообразие – или бублик – состоит из набора подобных окружностей

Рис. 7.10. Гипотеза SYZ предоставляет новый взгляд на K3-поверхности, являющиеся классом четырехмерных многообразий Калаби-Яу. Согласно гипотезе SYZ, мы можем создать K3-поверхность, взяв двухмерную сферу, являющуюся вспомогательным пространством в данном примере, и прикрепив к каждой ее точке двухмерный бублик

Именно здесь и проявляется зеркальная симметрия. Работая над первоначальной идеей SYZ, оксфордский геометр Найджел Хитчин, Марк Гросс и некоторые из моих бывших студентов (Найчанг Линг, Вейдонг Руан и другие) построили следующую картину. Рассмотрим многообразие X, состоящее из набора подмногообразий, перечисленных в пространстве модулей В. Теперь возьмем подмногообразия, имеющие радиус r, и заменим его на обратную величину 1/r. Одной из неожиданных, хотя и прекрасных особенностей теории струн, не присущей классической механике, является возможность провести подобную замену, а именно перевернуть радиус цилиндра, сферы или пространства, не изменив при этом их физические характеристики. Движение точечной частицы по окружности радиуса rможно описать при помощи ее момента импульса, который при этом квантуется – принимает строго определенные значения, кратные постоянной Планка – h. Струна, движущаяся по окружности, также обладает моментом импульса, но, в отличие от точечной частицы, она может наматываться на окружность один или более раз. Число оборотов струны вокруг окружности называется ее топологическим числом. Итак, движение струны, в отличие от движения частицы, характеризуется двумя квантующимися величинами: ее моментом импульса и ее топологическим числом. Рассмотрим струну с топологическим числом, равным двум, и моментом импульса, равным нулю, движущуюся по окружности радиуса r, и струну с топологическим числом, равным нулю, и моментом импульса, равным двум (то есть 2h), движущуюся по окружности радиуса 1/r. Хотя описания этих двух случаев звучат по-разному и вызывают в воображении разные картины, с математической точки зрения оба случая идентичны и приводят к одним и тем же физическим характеристикам. Это свойство известно как T-дуальность. «Эта эквивалентность переходит с окружностей на их [декартовы] произведения – торы», – говорит Заслоу.[114] Буква T в названии «T-дуальность» и означает «торы». Строминджер, Заслоу и я сочли эту дуальность столь важной для зеркальной симметрии, что назвали нашу первую статью, посвященную гипотезе SYZ, «T-дуальность – это зеркальная симметрия».

Приведу простой пример, показывающий тесную взаимосвязь T-дуальности и зеркальной симметрии. Пусть многообразие Мпредставляет собой тор – прямое произведение двух окружностей радиуса r. Многообразие, зеркальное к нему, М', также является тором – произведением двух окружностей радиуса 1/r. Представим себе теперь, что rчрезвычайно мало. Столь крошечный размер многообразия Мприводит к тому, что для понимания связанной с ним физики нужно принимать во внимание квантовые эффекты. Таким образом, сложность расчетов многократно возрастает. Извлечь же физические характеристики из зеркального многообразия М', намного легче, поскольку для очень малого rвеличина 1/rбудет очень велика, и квантовые эффекты можно свободно проигнорировать. Итак, зеркальная симметрия под личиной T-дуальности может существенно упростить ваши расчеты и жизнь в целом.

Теперь попробуем собрать воедино все идеи, выдвинутые ранее, начиная с нашего двухмерного примера. Заменив радиусы всех подмногообразий (окружностей) на 1/r,

вы обнаружите, что многообразие, состоящее из этих окружностей, изменит свой радиус, но все равно останется тором. Данный пример называют тривиальным, поскольку многообразие и его зеркальный партнер топологически идентичны. Четырехмерный пример с K3-поверхностями также является в некотором отношении тривиальным, поскольку все K3-поверхности топологически эквивалентны. Шестимерный пример с трехмерными многообразиями Калаби-Яу намного интереснее. Компонентами этого многообразия являются трехмерные торы. T-дуальность заменяет их радиусы на обратные. Для несингулярного тора изменение радиуса не приводит к изменению топологии. Однако по словам Гросса, «даже если все исходные подмногообразия принадлежали к числу “хороших” [несингулярных], изменение радиуса все же может повлечь за собой изменение топологии многообразия в целом, поскольку части… могут быть собраны вместе нетривиальным образом».[115]

Это утверждение проще всего понять при помощи аналогии. Взяв набор линейных сегментов или, например зубочисток, можно сделать из них цилиндр, втыкая их определенным образом в кружок из пробки. Вместо цилиндра, имеющего две стороны, из тех же зубочисток можно сделать и одностороннюю ленту Мёбиуса, втыкая их под небольшим углом друг к другу. Итак, из одних и тех же частей (подмногообразий) можно получить объекты с совершенно разной топологией.[116]

Дело в том, что, проведя преобразование T-дуальности и используя различные методы сборки подмногообразий, мы получим два топологически различных многообразия, идентичных с точки зрения физики. Это часть того, что мы подразумеваем под зеркальной симметрией, но это далеко не все, поскольку другая важная особенность T-дуальности состоит в том, что зеркальные пары должны иметь эйлеровы характеристики противоположных знаков. Однако все многообразия, рассмотренные здесь – особые лагранжевы многообразия, – имеют эйлеровы характеристики, равные нулю, которые не изменяются при замене радиусов на 1/r.

Все сказанное выше выполняется для «хороших» (несингулярных) подмногообразий, а для «плохих» (сингулярных) работать не будет. В таких подмногообразиях T-дуальность приведет к изменению знака эйлеровой характеристики с +1 на -1 и наоборот. Предположим, что исходное многообразие включает тридцать пять плохих подмногообразий, двадцать пять из которых имеют эйлерову характеристику, равную + 1, а десять – равную -1. Как показал Гросс, эйлерова характеристика многообразия является суммой эйлеровых характеристик входящих в него подмногообразий – в данном случае она будет равна + 15. В зеркальном многообразии все будет наоборот: двадцать пять подмногообразий будут иметь эйлерову характеристику, равную -1, а десять – +1, что даст в результате -15 – величину, противоположную эйлеровой характеристике исходного многообразия – что как раз и было нам нужно.

Эти “плохие” подмногообразия, как уже обсуждалось выше, соответствуют “плохим” точкам в пространстве модулей В. Как объясняет Гросс: «Все самое интересное в зеркальной симметрии, все топологические изменения происходят в вершинах пространства В». Итак, возникшая картина делает пространство Вцентральным объектом зеркальной симметрии. С самого начала это явление было покрыто мистическим туманом. «У нас были в наличии два многообразия, Xи X', неким образом связанные друг с другом, но что именно у них было общего – понять сложно», – добавляет Гросс. Этим «общим» оказалось пространство В, о существовании которого никто изначально не подозревал.

Гросс считает пространство Вчем-то вроде кальки. Взглянув на кальку под одним углом, вы увидите одну структуру (многообразие), посмотрев под другим углом – другую. Эта разница обусловлена наличием сингулярных точек в пространстве В, в которых T-дуальность перестает хорошо работать, что и приводит к изменениям.

Приблизительно такова современная картина зеркальной симметрии с точки зрения гипотезы SYZ. Одним из главных преимуществ этой гипотезы, по словам Строминджера, является то, что «происхождение зеркальной симметрии несколько прояснилось. Она пришлась по вкусу математикам, предоставив им геометрическую картину возникновения зеркальной симметрии – теперь они уже могли не ссылаться в своих исследованиях на теорию струн»[117]. В дополнение к геометрическому объяснению зеркальной симметрии наша гипотеза, по словам Заслоу, «предложила метод создания зеркальных пар».[118]

Важно иметь в виду, что SYZ является всего лишь гипотезой, доказанной только в нескольких частных случаях, но не в общем виде. Несмотря на то что в своей первоначальной формулировке эта гипотеза, возможно, недоказуема, она была модифицирована в свете новых идей, соединив в себе, по словам Гросса, «все из области зеркальной симметрии».[119]

Последнее утверждение многим может показаться спорным – и, возможно, даже преувеличенным. Но гипотеза SYZ уже использовалась, в частности, Концевичем и Яковом Сойбельманом из Университета штата Канзас для доказательства частного случая гомологической зеркальной симметрии, являющейся еще одной попыткой дать фундаментальное математическое описание зеркальной симметрии.

Поделиться:
Популярные книги

Хозяйка старой пасеки

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
7.50
рейтинг книги
Хозяйка старой пасеки

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Хозяин Теней 4

Петров Максим Николаевич
4. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 4

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Потомок бога

Решетов Евгений Валерьевич
1. Локки
Фантастика:
попаданцы
альтернативная история
аниме
сказочная фантастика
5.00
рейтинг книги
Потомок бога

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Надуй щеки! Том 7

Вишневский Сергей Викторович
7. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 7

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия