Чтение онлайн

на главную - закладки

Жанры

Теория струн и скрытые измерения Вселенной
Шрифт:

В экспериментах, выполненных на данный момент, маятник не показал никаких признаков кручения при измерении с точностью до одной десятой части миллионных долей градуса. Размещая маятник все ближе к дискам, исследователи исключили существование измерений, радиус которых больше 40 микрон. В своих будущих экспериментах Адельбергер намерен проверить закон обратных квадратов на еще меньших масштабах, доведя верхнюю оценку до 20 микрон. Адельбергер считает, что это не предел. Но чтобы провести измерения на еще меньших масштабах, необходим другой технологический подход.

Адельбергер считает гипотезу о больших дополнительных измерениях революционной, но замечает, что это не делает ее истинной.[248]

Нам необходимы новые тактики не только для исследования вопроса о больших измерениях, но также и для того, чтобы найти ответы на более общие вопросы, касающиеся существования дополнительных измерений и истинности теории струн.

Таково положение дел на сегодня – множество различных идей, из которых мы обсудили только небольшую горстку, и недостаточно сенсационные результаты, чтобы о них говорить. Заглядывая в будущее, Шамит Качру, например, надеется, что ряд экспериментов, планируемых или еще не придуманных, предоставит много возможностей увидеть что-то новое. Однако он признает возможность и менее радужного сценария, предполагающего, что мы живем в разочаровывающей Вселенной, дающей не так уж много эмпирических подсказок. «Если мы ничего не узнаем из космологии, ничего из экспериментов по ускорению частиц и ничего не извлечем из лабораторных экспериментов, тогда мы попросту застряли», – говорит Качру. Хотя он рассматривает такой сценарий как маловероятный, поскольку подобная ситуация не характерна ни для теории струн, ни для космологии, он замечает, что недостаток данных будет влиять аналогичным образом на другие области науки.[249]

Что мы будем делать дальше, после того как с пустыми руками достигнем конца этого отрезка пути? Окажется ли это для нас еще большим испытанием, чем поиск гравитационных волн в КМФ или бесконечно малых отклонений при измерениях на крутильных весах, в любом случае это будет испытанием нашего интеллекта. Каждый раз, когда происходит нечто подобное, когда каждая хорошая идея развивается не так, как хотелось бы, а каждая дорога приводит в тупик, вы или сдаетесь или пытаетесь придумать другие вопросы, на которые можно постараться найти ответы.

Эдвард Виттен, который, как правило, консервативен в своих заявлениях, смотрит в будущее с оптимизмом, чувствуя, что теория струн является слишком хорошей, чтобы не быть правдой. Хотя он признает, что в ближайшее время будет трудно точно определить, где мы находимся. «Чтобы проверить теорию струн, на нашу долю, вероятно, должно выпасть большое счастье, – говорит он. – Оно может звучать, как звучит тонкая струна, на которой записаны чьи-то мечты о теории всего, почти такая же тонкая, как сама космическая струна. Но, к счастью, в физике существует много способов поймать удачу».[250]

У меня нет возражений против этого утверждения, и я склонен согласиться с Виттеном, потому что считаю это мудрой политикой. Но если физики решат, что удача отвернулась от них, они, возможно, захотят обратиться к своим коллегам-математикам, которые с удовольствием возьмут на себя часть решения этой задачи.

Тринадцатая главаИстина, красота и математика

Насколько далеко могут зайти исследователи в своих попытках изучить скрытые измерения Вселенной при отсутствии физических доказательств? Аналогичный вопрос можно задать и струнным теоретикам, пытающимся создать всеобъемлющую теорию природы, не опираясь на обратную связь с экспериментом. Это похоже на исследование огромной темной пещеры с помощью только колеблющегося пламени свечи. Хотя некоторым исследования в таких обстоятельствах могут показаться чистым безумием, подобная ситуация далеко не беспрецедентна

в истории науки. На ранних этапах создания теории периоды блуждания во тьме – скорее правило, чем исключение, особенно когда речь идет о развитии и продвижении широкомасштабных идей. На подобных этапах, когда нет экспериментальных данных, на которые можно опереться, математическая красота – это все, что может служить нам путеводной нитью.

Поль Дирак «называл математическую красоту единственным критерием для выбора пути движении вперед в теоретической физике», – писал физик Питер Годдар.[251] Иногда такой подход полностью себя оправдывает, как это было в случае прогноза Дирака о существовании позитрона (как электрона с положительным зарядом), что стало возможным только потому, что математическое рассуждение навело его на мысль, что такие частицы должны существовать. Действительно, спустя несколько лет позитрон был открыт, подтвердив тем самым его веру в математику.

Действительно, мы снова и снова открываем для себя, что идеи, которые опираются на математику и соответствуют критерию простоты и красоты, обычно являются теми идеями, которые мы, в конце концов, наблюдаем реализованными в природе. Совершенно непостижимо, почему это происходит. Например, физик Юджин Вигнер пребывал в недоумении от «необоснованной эффективности математики в естественных науках», то есть остается загадкой, как чисто математические конструкции, не имеющие видимой связи с миром природы, тем не менее описывали этот мир с такой точностью.[252]

Физик Чженьнин Янг тоже удивился, обнаружив, что уравнения Янга-Миллса, описывающие взаимодействия между частицами, уходят своими корнями в физические калибровочные теории, обладающие удивительным сходством с идеями теории расслоения, которую математики начали разрабатывать тридцатью годами раньше и, по словам Янга, «без ссылки на физический мир». Когда он спросил геометра Ч. Ш. Черна, как такое возможно, что «математики выдумали эти понятия из ниоткуда», Черн запротестовал: «Нет, нет. Эти понятия не выдуманы. Они естественны и реальны».[253]

Конечно, нет недостатка в абстрактных идеях, пришедших к математикам чуть ли не из воздуха, которые, как обнаруживалось впоследствии, описывают природные явления. Не все они, между прочим, были продуктами современной математики. Считается, что конические сечения – круг, эллипс, парабола и гипербола – кривые, получаемые при сечении конуса плоскостью, были открыты греческим геометром Менехмом примерно в 300 году до нашей эры и широко использовались столетие спустя Аполлонием Пергским в его трактате «Коники». Однако эти формы не находили широкого научного применения до начала XVII века, когда Кеплер обнаружил, что орбиты планет Солнечной системы являются эллипсами.

Аналогично фуллерены или бакминстерфуллерены, новая форма углерода, содержащая 60 атомов углерода, соединенные в сфероподобную структуру с пятиугольными и шестиугольными гранями, была открыта химиками в 1980-е годы. А форма этих молекул была описана Архимедом более двух тысяч лет назад.[254] Теория узлов, раздел чистой математики, сформулированная в конце XIX века, нашла свое применение спустя более чем столетие в теории струн и в исследованиях ДНК.

Трудно сказать, почему математические идеи находят подтверждение в природе. Ричард Фейнман находил в той же степени сложным и объяснение, почему «каждый из наших физических законов может быть представлен чисто математической формулировкой». Ключ к разгадке, как он считал, может таиться в связи между математикой, природой и красотой. «Тем, кто не знает математики, – считал Фейнман, – сложно ощутить красоту, глубочайшую красоту природы».[255]

Поделиться:
Популярные книги

1941: Время кровавых псов

Золотько Александр Карлович
1. Всеволод Залесский
Приключения:
исторические приключения
6.36
рейтинг книги
1941: Время кровавых псов

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Попаданка 2

Ахминеева Нина
2. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 2

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Локки 5. Потомок бога

Решетов Евгений Валерьевич
5. Локки
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Локки 5. Потомок бога

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Темный Лекарь 6

Токсик Саша
6. Темный Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 6

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Титан империи 8

Артемов Александр Александрович
8. Титан Империи
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Титан империи 8

На прицеле

Кронос Александр
6. Лэрн
Фантастика:
фэнтези
боевая фантастика
стимпанк
5.00
рейтинг книги
На прицеле

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III