Чтение онлайн

на главную - закладки

Жанры

Том 19. Ипотека и уравнения. Математика в экономике

Салес Жузеп

Шрифт:

Всего можно составить четыре различные группы. Так, если в качестве четырех исходных элементов мы рассмотрим буквы А, В, С, D, то искомыми четырьмя сочетаниями будут AВС, ABD, ACD, BCD. Существуют другие типы группировки объектов, которые широко используются в дискретной математике, к ним относятся размещения и перестановки.

Размещение из n объектов по m Anm определяется так: две группы считаются различными, если они отличаются хотя бы одним элементом или же их элементы расположены в разном порядке. Все возможные

размещения из четырех элементов (р, q, r, s) по 3 таковы:

pqr, pqs, prq, psq, prs, psr,

qrp, qpr, qps, qsp, qrs, qsr,

rps, rsp, rpq, rqp, rsq, rqs,

spq, sqp, sqr, srq, spr, srp.

Число размещений вычисляется по формуле Anm = m•(m1)•(m2)…(mn + 1). В нашем случае число размещений равно

V34 = 4(41) (4 3 + 1) = 432 = 24.

Перестановки — это размещения, содержащие все исходные элементы, то есть размещения при = n. Перестановками из трех элементов (М, N, Р) являются размещения из 3 по 3. Все возможные перестановки таковы: MNP, MPN, NMP, NPM, PMNPNM. Число перестановок вычисляется по формуле

Рn = n(n1)(n2)(nn + 1) = n(n1)(n2)3•2•1 = n!

В нашем случае Р3 = 3(3 1)(3 2) = 3! = 6.

* * *

Вероятность того, что произойдет одно или несколько возможных событий, равняется сумме вероятностей отдельных событий, если они являются независимыми (то есть не могут произойти одновременно).

В нашем примере вероятность того, что шесть опрошенных используют определенное чистящее средство, равна

Использовав эту формулу, рассчитаем с помощью Excel таблицу значений от РВ(1)до РВ(12).

Распределение вероятностей передается графически двумя способами: справа оно представлено на гистограмме, слева — с помощью графика непрерывной функции

Искомая вероятность того, что рассматриваемую марку средства используют от 6 до 9 опрошенных, равна

РВ (6 < х < 9) = РВ (6) + РВ (7) + РВ (8) + РВ (9) =

= 0,0468708102 + 0,0141155039+ 0,0030996943 + 0,0004840363 = 0,0645700627 = 6,46 %

Средняя величина и среднеквадратическое отклонение для биномиального распределения рассчитываются по формулам:

среднее = np; среднеквадратическое отклонение =  =

В нашем случае

среднее = р = 12•0,24 = 2,88; среднеквадратическое отклонение =  =

 = 1,479.

Биномиальное распределение — это распределение вероятностей, график которого при

больших объемах выборки стремится к графику нормального распределения.

Кривая биномиального распределения слегка асимметрична по сравнению с кривой нормального распределения, которая полностью симметрична.

Слева — графики, описывающие три нормальных распределения с одинаковой средней  и среднеквадратическим отклонением = 1; = 2; = 3. Справа — графики, описывающие три нормальных распределения с одинаковым среднеквадратическим отклонением = 1 передними 1, 2, 3, 4.

Статистики и экономисты должны уметь работать с широким спектром распределений вероятности. Каждой конкретной ситуации, в которой встречаются случайные величины (переменные, значения которых невозможно спрогнозировать), соответствует определенное распределение вероятностей (функция распределения).

Некоторые распределения вероятностей описывают экономические и социальные явления. Ситуации, когда изучаемая переменная является дискретной (принимает только целые значения или значения «да»/«нет»), адекватно описываются биномиальным распределением. При непрерывных переменных во многих случаях применяется нормальное распределение, или кривая Гаусса.

Живительная математическая теорема, называемая «центральной предельной теоремой», гласит, что на очень больших генеральных совокупностях (при анализе множества деталей, изготовленных на станке, множества избирателей в стране, роста, веса, психологических характеристик людей, поведения групп людей и т. д.) рассматриваемые значения стремятся к нормальному распределению, следовательно, средние значения на выборках, взятых из этой совокупности, также подчиняются нормальному закону и совпадают со средними по всей совокупности. Среднеквадратическое отклонение на выборках также подчиняется нормальному закону и равняется среднеквадратическому отклонению генеральной совокупности.

Центральная предельная теорема является основным связующим звеном между значениями на выборке (несколько объектов) и значениями на большой генеральной совокупности (множество объектов) и показывает, насколько большое значение имеет нормальное распределение вероятности в статистических исследованиях.

По данным периодически проводимых опросов активного населения можно определить параметры всего населения страны с определенной погрешностью, которая описывается доверительным интервалом, о чем мы уже говорили выше.

Вероятность P(z) возникновения события z вычисляется как площадь, ограниченная графиком функции распределения и осью ОХ. Поэтому нет смысла говорить о Р(0,45), так как, во-первых, в связи с погрешностями измерения, неизбежными для любого инструмента, можно говорить лишь об определенном интервале, во-вторых, потому что площадь полученной области будет равна 0.

* * *

СТАНДАРТИЗОВАННОЕ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Стандартизованное нормальное распределение — это упрощенное нормальное распределение изучаемого параметра или переменной. Все значения хi изучаемой переменной меняются: из них вычитается среднее значение i, после чего результат делится на среднеквадратическое отклонение . Стандартизованная переменная обозначается буквой z.

Таким образом, центральным значением множества хi становится не , а 0. При делении на распределение становится стандартизованным, среднеквадратическое отклонение принимает значение  = 1. Таким образом, одно и то же распределение (один и тот же график, одну и ту же функцию и одну и ту же таблицу значений) можно использовать для любого нормального распределения после замены переменной, а благодаря этой замене при анализе любого нормального распределения можно использовать одну и ту же таблицу значений.

При переходе к новой переменной (от х к z) все распределения статистических переменных, подчиняющихся нормальному закону, определяются одной и той же функцией распределения (так

 при среднем значении, равном 0, и среднеквадратическом отклонении, равном 1.

Поделиться:
Популярные книги

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Ветер и искры. Тетралогия

Пехов Алексей Юрьевич
Ветер и искры
Фантастика:
фэнтези
9.45
рейтинг книги
Ветер и искры. Тетралогия

Бастард Императора. Том 6

Орлов Андрей Юрьевич
6. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 6

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Сочинения в трех томах. Том 1

Леблан Морис
Большая библиотека приключений и научной фантастики
Детективы:
классические детективы
5.00
рейтинг книги
Сочинения в трех томах. Том 1

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я