Чтение онлайн

на главную - закладки

Жанры

Том 6/2. Доски судьбы. Заметки. Письма
Шрифт:

Где мы начинаем знать, что время есть перевернутое пространство.

И если объемы переходят друг в друга по закону m3, где m – длина одного ребра, и этот счет дает право говорить о местах трех измерений, – не делайте себе из этого кумира.

А если подобные площади переходят друг в друга по закону m2, где m – длина ребра, и это позволяет говорить о месте двух измерений, – то переход чисел времени между обратными событиями по закону 3m дней приказывает говорить о времени трех измерений, а рост времен между растущими событиями

по закону 2m поет про время двух измерений.

Где в <скрепе> mn, где m не может быть больше трех, а n бесконечно, мы читаем лицо времени и, написав его в обратном порядке – nm, узнаем в нем старое лицо пространства, как другую дорогу одного и того же счета.

Где нет времени и пространства, а есть только счет.

Где мы открываем страницы времямерия и судьбомерия, пишем чертежи грядущих столетий и тешем тело Бога из глыбы чистого числа, избегая слова.

Где высота мысли есть отвес на прошлое и будущее и на этом отвесе парит орел моей мысли.

<О, числа, числа!>

Сдвиги русского народа*

1) Уравнение происхождения «Третьего Рима»:

X = K + 311 + 311 + (n - 1) (310 + 39 + 38– 365),

где K = 24.VIII.410 – разрушение первого Рима Аларихом.

При n = 1 получим 26.VIII.1380 – день Куликовской битвы, плотины Востоку и воскрешение России из монгольского ига;

при n = 2 получим 6.III.1613 – день избрания Романовых, в самом имени которых звучит передача завещания умершего Рима северному наследнику того времени.

2) X = K - 2n·39+n– (365 + 48·4) (n - 1),

<где> K = 26.II.1905 – битва при Мукдене, день отпора Западу.

Если n = 1, Х = 26.XI.1581 – походу Ермака, началу движения русских на восток; <если> n = 2, X = 3.IX.36 – битве при Навлохе, или началу движения римлян на восток.

Понимая два Эр, два незнания преград (русских и римлян), как Запад, мы видим, что обоим народам битва при Мукдене была плотиной через 310·2 и 311·2 дней.

3) Уравнение смерти двух царей;

X = K + 3n (39 + 38 + 37) + (365 + 48) (n - 1) + 33+n·n,

<где> K = 25.VI.1215 – «Великая хартия вольностей» англичан. При n = T, X = 30.I.1649 – день казни Карла 2-го, короля Англии; при n = 2, X = 16.VII.1918 – расстрел и смерть Николая 2-го.

Здесь участвует тройка ниспадающих степеней троек.

Между «хартией вольностей», похожей на крупицу радия, и днями Французской свободы 1792-го года прошло 577 лет, или треть 1730 лет, срока излучения вещественной зари радия.

4) X = K + 66– 212 + (1 + n)14-(1+n)n + n14-n^(n-1).

Это уравнение точек русской свободы.

K = 30.VI.1789 –

начало свободы Франции.

<При> n = 1, X = 17.III. 1917 – падение царей; <при> n = 2, X = 7.XI.1917 – начало советской власти.

Сверстанное человечество*

В обычном словесном изложении человечество походит на белую груду, на вороха сырых, свеженабранных листов печати, еще не собранных в книгу. Малейший ветер заставит их разлететься в стороны. Но есть способ сверстать эти разрозненные белые листы в строгую книгу, применив способ измерения рождений людей с судьбой одной и той же кривизны.

Подобные рождения, как прочная проволока, хорошо скрепляют готовые рассыпаться страницы будущей книги.

Затерянные в толще времени, рассеянные там и здесь, они послушны закону делимости на 365 лет и однообразными огоньками загораются на улице столетий, как вехи расстояний.

Вот такие ряды:

Всем знакомый Сократ, пророк устной беседы, родившийся в 458 году до Р. X.

Через 365·5 после него Дзонкава – великий учитель монголов, родившийся в 1357 г. Это был проповедник добра для глухих степей материка, враг книг, шедший путем устной беседы с учениками; он основал учение лам. Это Сократ пустынной Азии.

Через 365·6 – Сковорода (украинский Сократ), родившийся в 1722 г. Умирая, он радовался тому, что «мир его не поймал». Здесь старый Сократ в новой обстановке: около тополей, среди вишневых садов, на завалинке голубой украинской мазанки. Проходя шаги переселения душ, он изменил морским волнам своей родины.

Надо сказать, что категорический императив Канта очень напоминает демона Сократа, подсказывавшего добрые решения. Кант родился в 1724 г. Теперь понятно происхождение почти одновременного колоса Канта и Сковороды на немецко-славянском востоке.

Таким образом, эти два мудреца, появляясь в мир, были покорны предписанию относительно рождений: a1 = a2 (modul 365 лет).

Джон Стюарт Милль, создатель искусства мыслить молодого Севера, родился в 1806 г., через 365·6 после учителя строгой мысли древнего <мира> Аристотеля, родившегося в 384 г. <до Р. X.>. Это два, созвучные друг другу, отца правил не ошибаться во время мысли.

Итак, само искусство мыслить покорно правилу рождений через 365-летая.

Пророк Ирана Мирза-Баб родился через 365·5 после Иисуса (6-й год до Р. X.).

Разве Тахире (или Хурриет Эль Айн) не напоминала Магдалину? Когда она затягивала веревку на своей шее? И вороны, кружившиеся над Бабом, когда он был расстрелян на стенах Тавриза, не напоминали вороньи стаи Голгофы?

Мирза-Баб родился в 1820 году, то есть через 365·5 после Иисуса.

О степенях*

Если к 33^3 прибавить знак тройки простым отношением сложения трех единиц к существующему множеству, точно к толпе пришли три новых члена ее, три рядовых, шагающих по знакомой мостовой участника ее страстей, то ни один зоркий глаз не заметит перемен, настолько ничтожна власть неравенства (числа) в этом отношении и сдвиг, вызываемый им.

Поделиться:
Популярные книги

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота