Чтение онлайн

на главную - закладки

Жанры

Трещина в мироздании
Шрифт:

В завершение встречи с Джилл я поблагодарила ее и пообещала быть на связи. Мне нужно было переварить всю новую информацию и просчитать плюсы и минусы добавления исследований CRISPR к текущим проектам моей лаборатории. Если я соглашаюсь заниматься этой темой, мне понадобится ученый, постоянно занятый координацией работы по ней, так как у меня самой не хватило бы времени возглавить новый проект: я была слишком занята руководством лабораторией в целом.

Мне также нужно было освежить свои знания о мире бактерий и о вирусах, которые поражают эти бактерии. Я опубликовала немало научных статей о вирусе гепатита С, я изучала вирус гриппа с новым постдоком в собственной лаборатории, и я знала, что механизм РНК-интерференции тесно связан с противовирусной защитой растений и животных. Но я никогда не изучала вирусы бактерий и даже не особенно задумывалась о них. Если я собираюсь присоединиться к исследованиям Джилл, это положение дел нужно было менять.

Фредерик Туорт, британский бактериолог, работавший в начале XX века, стал первым ученым, отметившим действие бактериальных вирусов. По иронии судьбы, изначально Туорт собирался исследовать не вирусы бактерий, а вирусы, поражающие животных и растения, – а они были открыты уже давно. Однако в ходе попыток

извлечь вирусы из таких субстратов, как навоз и сено, а затем культивировать их, Туорт обнаружил странную колонию бактерий из рода Micrococcus. Складывалось ощущение, что бактерии больны; вместо того чтобы, как большинство других бактерий, плотными колониями расти на питательной среде в чашках Петри, их культуры выглядели водянистыми и прозрачными. Если Туорт брал мазок с водянистой колонии микрококков и переносил его на здоровую, последняя через какое-то время тоже приобретала стеклянистый вид, словно ее чем-то заразили. Туорт написал статью, в которой предположил, что инфекционный агент в данном случае имеет вирусную природу, но идея о том, что вирусы способны заражать бактерии, в то время казалась неслыханной, а у перемен, произошедших с культурами, могли быть и другие объяснения. Ученый не мог с полной уверенностью говорить, что конкретно поразило здоровые культуры.

В 1917 году, спустя два года после публикации статьи Туорта, вирусы бактерий заново открыл канадский врач Феликс д’Эрелль. Во время Первой мировой войны д’Эрелль служил во Франции, и ему поручили расследовать причину вспышки дизентерии, которая косила солдат одного из кавалерийских эскадронов. Стремясь выяснить, почему одни больные выздоравливают, а другие нет, д’Эрелль взял у пациентов образцы кала и подверг их обстоятельному, хотя и достаточно грубому анализу. Сначала он пропустил кровянистый стул своих подопечных через мелкоячеистый фильтр, чтобы удалить из него все твердые частицы – включая бактерии. Затем д’Эрелль налил немного отфильтрованной жидкости на культуры бактерий рода Shigella, вызывающих дизентерию. На следующий день он с удивлением обнаружил, что одна из культур заразных бактерий под фекальной жидкостью “растворилась подобно сахару в воде” – исчезла буквально за ночь [50] . Что еще интереснее, когда д’Эрелль поспешил в госпиталь узнать о состоянии пациента, у которого был взят этот образец кала, он обнаружил, что больному заметно лучше. Сопоставив эти факты, д’Эрелль заключил, что возбудителя дизентерии уничтожил некий паразит, которого ученый назвал бактериофагом (“пожирателем бактерий”); эта форма жизни должна была быть достаточно маленького размера, чтобы пройти через фильтр. Судя по всему, “бактериофаг” заражал бактерии фактически так же, как другие вирусы инфицировали растения или животных.

50

D. H. Duckworth, “Who Discovered Bacteriophage?”, Bacteriological Reviews 40 (1976): 793–802.

В последующие годы было открыто множество бактериофагов, или, сокращенно, фагов, и выяснилось, что каждый из них поражает свой конкретный вид бактерий. По мере накопления знаний о новых разновидностях фагов увеличивался ажиотаж вокруг так называемой фаговой терапии – идеи о том, что бактериофагов можно использовать для лечения микробных инфекций. Хотя некоторым ученым претила идея вводить живые вирусы в организм человека, клинические испытания показывали, что фаги “не замечают” человеческие клетки и видимых побочных эффектов у фаговой терапии нет. В 1923 году д’Эрелль помогал советским ученым организовать институт в Тбилиси [51] , исследования в котором были посвящены бактериофагам; во времена своего расцвета учреждение насчитывало более тысячи сотрудников, производящих тонны фагов в год для клинического использования [52] . В некоторых уголках мира фаговую терапию используют и по сей день – в Грузии в настоящее время фаги назначают при бактериальных инфекциях примерно в 20 процентах случаев [53] . Однако после того как в 1930-х были открыты антибиотики (а в 1940-х началось их массовое производство), этот способ терапии был быстро забыт, особенно на Западе.

51

Институт бактериофагов в Тбилиси основал Георгий Григорьевич Элиава в 1923 году. Д’Эрелль приехал туда значительно позже – в 1934-м. Тем не менее в 1923-м двое ученых уже были знакомы.

52

C. Zimmer, A Planet of Viruses. Chicago: University of Chicago Press, 2011. Книга переведена на русский: Карл Циммер. Планета вирусов / Пер. А. Рангулова. Ростов-на-Дону: Феникс, 2012.

53

G. Naik, “To Fight Growing Threat from Germs, Scientists Try Old-fashioned Killer”, Wall Street Journal, January 22, 2016.

Хотя бактериофаги нашли лишь ограниченное применение в медицине, для генетиков они стали настоящим подарком судьбы. К тому моменту, когда ученые с помощью новых электронных микроскопов с большим увеличением смогли впервые увидеть фагов (это случилось в 1940–1950-е годы), эти вирусы вкупе с бактериями-жертвами уже предоставили очередное доказательство дарвиновской теории естественного отбора. Они помогли установить, что именно ДНК, а не белки, служит “молекулой наследственности” в клетках. Тот факт, что генетический код триплетен (то есть каждые три “буквы” ДНК обозначают одну аминокислоту в белке), был впервые продемонстрирован на примере фагов; эксперименты с последними позволили также выяснить, как “включаются” и “выключаются” гены внутри клетки. Даже открытие Джошуа Ледерберга (он обнаружил, что вирусы могут вносить чужеродные гены в инфицированные ими клетки, и это стало одним из ранних подступов к генной терапии) было сделано благодаря фагу, специализирующемуся на бактериях рода Salmonella. Во многом именно эксперименты с вирусами бактерий заложили основы молекулярной генетики.

Кроме того, изучение фагов послужило толчком к революции в молекулярной биологии 1970-х годов. Исследуя иммунные механизмы, с помощью которых бактерии дают отпор фаговым инфекциям,

ученые обнаружили класс ферментов, называемых эндонуклеазами рестрикции; их можно “настроить” таким образом, чтобы они разрезали фрагменты искусственно синтезированной ДНК (это было показано в простых экспериментах вне живых объектов). Используя сочетание этих ферментов с другими ферментами, выделенными из инфицированных фагами клеток, исследователи сумели создать и клонировать искусственные молекулы ДНК в лабораторных условиях. Одновременно с этим геномы фагов послужили прекрасной мишенью для только что разработанных технологий секвенирования ДНК. В 1977 году Фред Сенгер и его коллеги успешно определили последовательность всех нуклеотидов ДНК в геноме фага ФX174. Двадцать пять лет спустя тот же фаг снова оказался в центре внимания: он стал первым объектом, чей геном был синтезирован с нуля [54] .

54

G. P. C. Salmond and P. C. Fineran, “A Century of the Phage: Past, Present and Future”, Nature Reviews Microbiology 13 (2015): 777–786.

Впрочем, бактериофаги – это не просто популярные “подопытные кролики”. Это еще и наиболее многочисленные биологические объекты на планете – и по этому показателю они лидируют с большим отрывом. Фаги в природе так же вездесущи, как свет и почва, и их можно найти в грязи, воде, человеческом кишечнике, горячих источниках, ледяных кернах и практически во всех других местах, где возможна жизнь. Ученые оценивают численность бактериофагов на Земле в 1031 вирусных частиц – десять миллионов триллионов триллионов, или единица с 31 нулем. В одной чайной ложке морской воды в пять раз больше фагов, чем в Нью-Йорке людей. Невероятно, но фагов на планете намного больше, чем бактерий, которые они могут инфицировать; столь же вездесущие, как и микроорганизмы, бактериофаги превышают численность последних на порядок. Они вызывают примерно триллион триллионов инфекций по всему миру каждую секунду, а если брать только океан, то там ежедневно от смертоносного заражения фагами погибает около 40 % всех бактерий [55] .

55

F. Rohwer et al., Life in Our Phage World (San Diego: Wholon, 2014).

Эти вирусы созданы для убийства: в течение миллиардов лет они эволюционировали, чтобы научиться заражать бактерии с беспощадной эффективностью. Все фаги состоят из прочной белковой наружной оболочки, называемой капсидом, в которую упакован генетический материал. Фаговый капсид может иметь одну из десятков разнообразных форм, и все они спроектированы таким образом, чтобы максимально эффективно защищать геном вируса и успешно переносить его генетический материал в бактериальные клетки, где тот способен размножаться и распространяться. Некоторые фаги имеют изящную икосаэдрическую форму, у других длинный хвост присоединяется к шарообразному капсиду. Нитевидные фаги цилиндрические. Возможно, самые устрашающие из этих вирусов – те, что похожи на инопланетные корабли, с “ногами” для закрепления на поверхности клетки, “головой”, в которой хранится ДНК [56] , и “насосами”, впрыскивающими эту ДНК в клетку после того, как фаг закрепится снаружи.

56

Даудна, вероятнее всего, описывает строение фага лямбда, геном которого представлен молекулой ДНК. Однако бактериофаги вместо ДНК могут содержать и РНК, что в тексте не указано.

Примеры различных бактериофагов

Методы работы вирусов, как и их внешний вид, разнообразны, но неизменно (и смертоносно) эффективны. Некоторые вирусные геномы упакованы в капсид так плотно, что генетический материал под давлением буквально выстреливает в клетку, словно пробка от шампанского, как только нарушается целостность белковой клеточной оболочки. Сразу после того, как геном вируса попал в клетку, он способен захватить контроль над клеткой-хозяином одним из двух способов. При паразитическом, или лизогенном, жизненном цикле геном вируса внедряется в геном хозяина и в таком виде, никак себя не проявляя, может передаваться из поколения в поколение, ожидая подходящего момента для нападения. Напротив, при инфекционном, или литическом, жизненном цикле геном вируса сразу же захватывает ресурсы клетки-хозяина, заставляя их работать на себя: производить вирусные белки вместо микробных и многократно копировать геном фага до тех пор, пока клетка не лопнет от распирающих ее вирусных частиц, разбросав последние на соседние бактерии. С помощью этого цикла внедрения в клетку, захвата контроля над ней и распространения по ее потомкам или соседям один-единственный фаг может полностью уничтожить целую популяцию бактерий за считанные часы.

Но бактерии не так уж беспомощны в этой старой как мир войне. Точно так же как растения и животные, за миллиарды лет эволюции они выработали впечатляющие стратегии защиты. К моменту нашего разговора с Джилл у бактерий уже были открыты четыре основные защитные системы [57] . В рамках наиболее выдающейся из них бактерии “навешивают” на свой геном уникальные метки, немного меняющие химические свойства ДНК, но не меняющие экспрессию генетической информации. В дополнение к этому бактерии производят ферменты (эндонуклеазы рестрикции), которые разрезают любую ДНК, не несущую таких меток, зачищая клетку ото всех фаговых генов, проникших под ее оболочку. Также бактерии способны попросту заблокировать фаговой ДНК путь внутрь себя – либо заделывая отверстия, проделанные этими вирусами, в результате чего последние не могут ввести ДНК в клетку, либо делая неузнаваемыми белки на своей поверхности, к которым в обычных условиях прикрепляются фаги. У бактерий даже развилась способность чувствовать наступающую инфекцию и “совершать самоубийство” до распространения заразы – самоотверженный способ защитить остальные клетки в сообществе.

57

S. J. Labrie, J. E. Samson, and S. Moineau, “Bacteriophage Resistance Mechanisms”, Nature Reviews Microbiology 8 (2010): 317–327.

Поделиться:
Популярные книги

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Вторая мировая война

Бивор Энтони
Научно-образовательная:
история
военная история
6.67
рейтинг книги
Вторая мировая война

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Новый Рал 3

Северный Лис
3. Рал!
Фантастика:
попаданцы
5.88
рейтинг книги
Новый Рал 3

С Д. Том 16

Клеванский Кирилл Сергеевич
16. Сердце дракона
Фантастика:
боевая фантастика
6.94
рейтинг книги
С Д. Том 16

Босс Мэн

Киланд Ви
Любовные романы:
современные любовные романы
8.97
рейтинг книги
Босс Мэн

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Призван, чтобы защитить?

Кириллов Сергей
2. Призван, чтобы умереть?
Фантастика:
фэнтези
рпг
7.00
рейтинг книги
Призван, чтобы защитить?

Мы все умрём. Но это не точно

Aris me
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
Мы все умрём. Но это не точно