Шрифт:
Тринадцать
Ну что же, сегодня обойдёмся без прелюдий и приступим сразу к делу. Наиболее плотно к вопросу числа 13 подошёл Друнвало Мельхиседек. Приведу некоторые его пояснения из первого
Каждый, изучавший священную геометрию или даже просто обычную геометрию, знает, что существуют пять уникальных форм, и для понимания как священной, так и обычной геометрии они являются решающими. Их именуют Платоновыми телами.
Вот и они:
< image l:href="#"/>Куб
Тетраэдр
Октаэдр
Икосаэдр
Додекаэдр (в данном случае пентагональный)
Обратите внимание на количество, 5 тел, нам понадобится это позже.
Платоново тело определяется некоторыми характеристиками. Прежде всего, все грани его имеют одинаковый размер. Например, куб, самое известное из Платоновых тел, имеет каждой своей гранью квадрат, и все его грани – одинакового размера. Второе, все рёбра Платонового тела имеют одинаковую длину; все рёбра куба – одной длины. Третье: все внутренние углы между гранями имеют одинаковую величину. В случае куба, этот угол равен 90 градусам. И четвёртое: если Платоново тело поместить внутрь сферы (правильной
Таким определениям, кроме куба (А), отвечают только четыре формы, обладающие всеми этими характеристиками. Вторым будет тетраэдр (В) (тетра означает «четыре») – это полиэдр, имеющий четыре грани, все – равносторонние треугольники, одинаковую длину рёбер и одинаковый угол, и – все вершины касаются поверхности сферы.
Другая простая форма – это октаэдр (С) (окта значит «восемь»), все восемь граней представляют собой равносторонние треугольники одинакового размера, длина рёбер и углов одинакова, и все вершины касаются поверхности сферы. Остальные два Платоновых тела немного сложнее. Один называется икосаэдром (D) – значит, он имеет 20 граней, имеющих вид равносторонних треугольников при одинаковой длине рёбер и углов; все его вершины тоже касаются поверхности сферы. Последний называется пентагональным додекаэдром (Е) (додэка – это 12), гранями которого являются 12 пентагонов (пятиугольники) при одинаковой длине рёбер и одинаковых углах; все его вершины касаются поверхности сферы. Если вы – инженер или архитектор, то вы изучали эти пять форм в колледже, хотя бы поверхностно, потому что они являются базовыми структурами.
Конец ознакомительного фрагмента.