Учебник логики
Шрифт:
Если при делении мы не перечислим всех видов, т.е. если эта сумма будет меньше, то у нас получится деление неполное; если же мы в объём делимого понятия введём виды, которые в нём на самом деле не содержатся, то у нас получится деление слишком обширное, т.е. указанная сумма будет больше. Например, положив в основание деления понятия «треугольник» величину его углов, мы могли бы получить такое деление:
Треугольник:
• Остроугольный
• Тупоугольный
Ясно, что это деление неполное, ибо здесь не хватает одного члена деления, потому что в объёме понятия «треугольник» находится ещё один вид, который при делении нами пропущен,
Неполным было бы деление людей на порочных и добродетельных, деление научных теорий на истинные и ложные, потому что в этих делениях упускаются промежуточные ступени. Кроме людей порочных и добродетельных есть люди, о которых нельзя сказать, что они порочны, но нельзя также сказать, что они добродетельны; кроме истинных и ложных теорий существуют ещё теории частью истинные и частью ложные.
Обратная ошибка будет получаться в том случае, если мы, деля какое-либо понятие, вводим в его объём такой вид, который не входит в действительности в его объём. Если бы мы, например, разделили понятие «дерево» на «дуб», «ель», «фиалка», то очевидно, что вид «фиалка» относится к объёму совсем другого понятия и что при делении понятия «дерево» он попал в число членов его неправильно.
2. Члены деления должны исключать друг друга. Это требование станет ясным, если мы возьмём для примера, следующее деление:
Книги:
• Французские
• Немецкие
• Словари и т.д.
Это деление неправильно, ибо понятие, например, «французские книги» и понятие «словари» не исключают друг друга: книга может быть и французской и словарём в одно и то же время. Или возьмём в пример также другое деление понятия «книги»:
Книги:
• Полезные
• Понятные
• Интересные и т.д.
Здесь один вид книг не исключает из своего объёма других видов: полезная книга может быть в одно и то же время и понятной и интересной. Ошибки, как в первом, так и во втором из приведённых примеров деления произошли потому, что не было выдержано третье требование правильного деления, а именно:
3. Деление должно иметь одно основание. При делении понятий чаще всего повторяется ошибка, заключающаяся в том, что в процессе деления меняется основание деления.
Произведём деление народов Европы:
Народы Европы:
• Магометане
• Христиане
• Французы
• Немцы и т.д.
Это деление неправильно, ибо мы, взяв сначала основанием деления понятие «религия», затем меняем это основание на другое, именно на понятие «национальность».
Или другой пример:
Прямолинейные фигуры:
• Треугольники
• Параллелограммы
• Прямоугольники
• Многоугольники
Это деление также неправильно, так как у нас здесь скрещиваются такие различные основания деления, как число сторон, направление сторон, величина углов. Такое деление называется перекрёстным.
Итак, третье условие правильности деления заключается в том, чтобы при последовательном перечислении видов делимого понятия было выдержано одно основание деления. Но следует заметить, что одно основание деления должно быть выдержано только при первом делении понятия; уже при вторичном делении, т.е. при подразделении, основание деления должно измениться. Так, например, если мы разделили понятие «треугольник», взяв основанием деления величину углов, на такие виды, как остроугольный, прямоугольный и тупоугольный, то, желая далее продолжать деление
Треугольник:
1) Тупоугольный
2) Прямоугольный
3) Остроугольный:
а) равносторонний
б) равнобедренный
в) разносторонний
4. Деление должно быть непрерывным, т.е. при делении какого-либо понятия нужно переходить к ближайшему низшему роду, в противном случае будет получаться то, что называется скачком в делении. Если бы мы понятие «природа» разделили на 1) «животные», 2) «растения», 3) «минералы», то в этом делении был бы слишком внезапный переход от понятия «природа» к понятиям «минералы», «животные». Чтобы исправить ошибку, следует вставить между понятием «природа» и членами вышеприведённого деления ещё два посредствующих звена.
Именно: понятия «мир неорганический» и «мир органический». Тогда деление приняло бы следующий вид:
Природа:
Мир органический:
• животные
• растения
Мир неорганический:
• минералы и проч.
Какова задача деления? Что называется делимым понятием? Что называется членами деления? Что такое основание деления? Что такое подразделение? Что такое дихотомия? Его преимущества и недостатки. Перечислите правила деления. Приведите примеры ни каждое правило и укажите применение каждого правила.
Глава VII
О суждении
Познание и суждение. Если бы у нас были одни только представления и понятия, но не было бы их соединения или связи, то могли ли бы мы сказать, что у нас есть познание? Конечно, нет. Познание может быть только в том случае, если мы имеем дело с истинностью или ложностью; а вопрос об истинности или ложности возникает только тогда, когда между понятиями устанавливается известная связь; это бывает именно тогда, когда мы судим о чём-нибудь. Например, когда я произношу слово «дом», то в понятии, выражаемом этим словом, нет ничего ни истинного, ни ложного. Когда же я говорю «дракон существует», «дракон имеет крылья», то я утверждаю нечто истинное или ложное. Следовательно, об истинности и ложности может быть речь только в том случае, когда мы имеем дело с суждением. Суждение всегда имеет дело с какой-либо объективной реальностью.
Суждение есть известное умственное построение; будучи выражено в словах, оно называется предложением.
Грамматический анализ предложения. В предложении мы всегда высказываем что-нибудь относительно чего-нибудь. То, относительно чего мы высказываем, называется подлежащим, субъектом, а то, что мы о нём высказываем, называется предикатом, сказуемым. Типом простого предложения является предложение «A есть B», «A не есть B». В этих предложениях A есть субъект (subjectum), B есть предикат (praedicatum); «есть» и «не есть» называется связкой (copula), потому что она служит для связывания подлежащего со сказуемым. Подлежащее обыкновенно обозначается символом S, а сказуемое – символом P (начальные буквы слов subjectum, praedicatum).
Как я строил магическую империю
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Наследник
1. Старицкий
Приключения:
исторические приключения
рейтинг книги
Кротовский, может, хватит?
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
рейтинг книги
Надуй щеки! Том 6
6. Чеболь за партой
Фантастика:
попаданцы
дорама
рейтинг книги
Дворянская кровь
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Взлет и падение третьего рейха (Том 1)
Научно-образовательная:
история
рейтинг книги
