Чтение онлайн

на главную - закладки

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

В заключение заметим, что для ответа типа число, ввести уровень уверенности подобным образом невозможно. Пожалуй, единственным способом оценки достоверности результата является консилиум нескольких сетей — если несколько сетей обучены решению одной и той же задачи, то в качестве ответа можно выбрать среднее значение, а по отклонению ответов от среднего можно оценить достоверность результата.

Построение оценки по интерпретатору

Если в качестве ответа нейронная сеть должна выдать число, то естественной оценкой является квадрат разности выданного сетью выходного сигнала и правильного ответа. Все остальные оценки для обучения сетей решению таких задач являются модификациями данной. Приведем пример такой модификации. Пусть при составлении задачника величина

, являющаяся ответом, измерялась с некоторой точностью e. Тогда нет смысла требовать от сети обучиться выдавать в качестве ответа именно величину
.
Достаточно, если выданный сетью ответ попадет в интервал
. Оценка, удовлетворяющая этому требованию, имеет вид:

Эту оценку будем называть оценкой числа с допуском e.

Для задач классификации также можно пользоваться оценкой типа суммы квадратов отклонений выходных сигналов сети от требуемых ответов. Однако, эта оценка плоха тем, что, во-первых, требования при обучении сети не совпадают с требованиями интерпретатора, во-вторых, такая оценка не позволяет оценить уровень уверенности сети в выданном ответе. Достоинством такой оценки является ее универсальность. Опыт работы с нейронными сетями, накопленный красноярской группой НейроКомп, свидетельствует о том, что при использовании оценки, построенной по интерпретатору, в несколько раз возрастает скорость обучения.

Для оценок, построенных по интерпретатору потребуется следующая функция оценки

и ее производная

Рассмотрим построение оценок по интерпретатору для четырех рассмотренных в предыдущем разделе интерпретаторов ответа.

1. Кодирование номером канала. Знаковый интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств:

где e — уровень надежности.

Оценку, вычисляющую расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств, можно записать в виде:

Производная оценки по i-му выходному сигналу равна

2. Кодирование номером канала. Максимальный интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств: αke≥αi при i≠k. Оценкой решения сетью данного примера является расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств. Для записи оценки, исключим из вектора выходных сигналов сигнал αk, а остальные сигналы отсортируем по убыванию. Обозначим величину αke через β0, а вектор отсортированных сигналов через β1β2≥…≥βN– 1. Система неравенств в этом случае приобретает вид β0βi, при i>1. Множество точек удовлетворяющих этой системе неравенств обозначим через D. Очевидно, что если β0β1, то точка b принадлежит множеству D. Если β0<β1, то найдем проекцию точки b на гиперплоскость β0=β1. Эта точка имеет координаты

Если

, то точка β¹ принадлежит множеству D. Если нет, то точку b нужно проектировать на гиперплоскость β0=β1=β2.
Найдем эту точку. Ее координаты можно записать в следующем виде (b,b,b,β3,…,βN– 1). Эта точка обладает тем свойством, что расстояние от нее до точки b минимально. Таким образом, для нахождения величины b достаточно взять производную от расстояния по b и приравнять ее к нулю:

Из этого уравнения находим b и записываем координаты точки β²:

Эта процедура продолжается дальше, до тех пор, пока при некотором l не выполнится неравенство

или пока l не окажется равной N–1. Оценкой является расстояние от точки b до точки

Она равна следующей величине

Производная оценки по выходному сигналу βm равна

Для перехода к производным по исходным выходным сигналам αi необходимо обратить сделанные на первом этапе вычисления оценки преобразования.

3. Двоичный интерпретатор. Оценка для двоичного интерпретатора строится точно также как и для знакового интерпретатора при кодировании номером канала. Пусть правильным ответом является k-ый класс, тогда обозначим через K множество номеров сигналов, которым в двоичном представлении k соответствуют единицы. При уровне надежности оценка задается формулой:

Производная оценки по i-му выходному сигналу равна:

4. Порядковый интерпретатор. Для построения оценки по порядковому интерпретатору необходимо предварительно переставить компоненты вектора a в соответствии с подстановкой, кодирующей правильный ответ. Обозначим полученный в результате вектор через βº. Множество точек, удовлетворяющих условию задачи, описывается системой уравнений , где e — уровень надежности. Обозначим это множество через D. Оценка задается расстоянием от точки b до проекции этой точки на множество D. Опишем процедуру вычисления проекции.

1. Просмотрев координаты точки βº, отметим те номера координат, для которых нарушается неравенство βºi+e≤βºi+1.

2. Множество отмеченных координат либо состоит из одной последовательности последовательных номеров i,i+1,…,i+l, или из нескольких таких последовательностей. Найдем точку β¹, которая являлась бы проекцией точки βº на гиперплоскость, определяемую уравнениями β¹i+e≤β¹i+1, где i пробегает множество индексов отмеченных координат. Пусть множество отмеченных координат распадается на n последовательностей, каждая из которых имеет вид

, где m — номер последовательности. Тогда точка β¹ имеет вид:

3. Точка β¹ является проекцией, и следовательно, расстояние от βº до β¹ должно быть минимальным. Это расстояние равно

Для нахождения минимума этой функции необходимо приравнять к нулю ее производные по γm. Получаем систему уравнений

Решая ее, находим

Поделиться:
Популярные книги

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Попаданка 3

Ахминеева Нина
3. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 3

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Призыватель нулевого ранга. Том 3

Дубов Дмитрий
3. Эпоха Гардара
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга. Том 3

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Чужбина

Седой Василий
2. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чужбина

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая

Локки 5. Потомок бога

Решетов Евгений Валерьевич
5. Локки
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Локки 5. Потомок бога

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4