Чтение онлайн

на главную - закладки

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

6. Добавляем ik+1 в множество индексов найденных векторов: I(k+1)=I(k)∪{ik+1}.

7. Вычисляем не аппроксимированную часть (ошибку аппроксимации) вектора выходных сигналов:

.

8. Преобразуем обрабатываемые вектора к промежуточному представлению — ортогонализуем их к вектору

,
для чего каждый вектор xp(k), у которого pJ(k) преобразуем по следующей формуле:
.

9. Увеличиваем k на единицу и переходим к шагу 2.

10. Если k=0, то весь сумматор удаляется из сети и работа алгоритма завершается.

11. Если k=n+1, то контрастирование невозможно и сумматор остается неизменным.

12. В противном случае полагаем I=I(k) и вычисляем новые веса связей αp(pI) решая систему уравнений

13. Удаляем из сети связи с номерами pJ, веса оставшихся связей полагаем равными αp(pI).

Данная процедура позволяет производить контрастирование адаптивных сумматоров. Причем значения, вычисляемые каждым сумматором после контрастирования, отличаются от исходных не более чем на заданную величину. Однако, исходно была задана только максимально допустимая погрешность работы сети в целом. Способы получения допустимых погрешностей для отдельных сумматоров исходя из заданной допустимой погрешности для всей сети описаны в ряде работ [95–97, 168, 210–214, 355].

Гибридная процедура контрастирования

Можно упростить процедуру контрастирования, описанную в разд. «Контрастирование без ухудшения». Предлагаемая процедура годится только для контрастирования весов связей адаптивного сумматора (см. разд. «Составные элементы»). Контрастирование весов связей производится отдельно для каждого сумматора. Адаптивный сумматор суммирует входные сигналы нейрона, умноженные на соответствующие веса связей. Для работы нейрона наименее значимым будем считать тот вес, который при решении примера даст наименьший вклад в сумму. Обозначим через xqp входные сигналы рассматриваемого адаптивного сумматора при решении q-го примера. Показателем значимости веса назовем следующую величину: Xqp=|(wp– wp)·xqp|. Усредненный по всем примерам обучающего множества показатель значимости имеет вид

. Производим контрастирование по процедуре, приведенной в разд. «Контрастирование на основе показателей значимости»

В самой процедуре контрастирования есть только одно отличие — вместо проверки на наличие ошибок при предъявлении всех примеров проверяется, что новые выходные сигналы сети отличаются от первоначальных не более чем на заданную величину.

Контрастирование при обучении

Существует еще один способ контрастирования нейронных сетей. Идея этого способа состоит в том, что функция оценки модернизируется таким способом, чтобы для снижения оценки было выгодно привести сеть к заданному виду. Рассмотрим решение задачи приведения параметров сети к выделенным значениям. Используя обозначения из предыдущих разделов требуемую добавку к функции оценки, являющуюся штрафом за отклонение

значения параметра от ближайшего выделенного значения, можно записать в виде
.

Для решения других задач вид добавок к функции оценки много сложнее.

Определение показателей значимости

В данном разделе описан способ определения показателей значимости параметров и сигналов. Далее будем говорить об определении значимости параметров. Показатели значимости сигналов сети определяются по тем же формулам с заменой параметров на сигналы.

Определение показателей значимости через градиент

Нейронная сеть двойственного функционирования может вычислять градиент функции оценки по входным сигналам и обучаемым параметрам сети.

Показателем значимости параметра при решении q-о примера будем называть величину, которая показывает насколько изменится значение функции оценки решения сетью q-о примера если текущее значение параметра wp заменить на выделенное значение wp. Точно эту величину можно определить произведя замену и вычислив оценку сети. Однако учитывая большое число параметров сети вычисление показателей значимости для всех параметров будет занимать много времени. Для ускорения процедуры оценки параметров значимости вместо точных значений используют различные оценки [33 , 65 , 91]. Рассмотрим простейшую и наиболее используемую линейную оценку показателей значимости. Разложим функцию оценки в ряд Тейлора с точностью до членов первого порядка:

где H0q — значение функции оценки решения q-о примера при w=w. Таким образом показатель значимости p-о параметра при решении q-о примера определяется по следующей формуле:

(1)

Показатель значимости (1) может вычисляться для различных объектов. Наиболее часто его вычисляют для обучаемых параметров сети. Однако показатель значимости вида (1) применим и для сигналов. Как уже отмечалось в главе «Описание нейронных сетей» сеть при обратном функционировании всегда вычисляет два вектора градиента — градиент функции оценки по обучаемым параметрам сети и по всем сигналам сети. Если показатель значимости вычисляется для выявления наименее значимого нейрона, то следует вычислять показатель значимости выходного сигнала нейрона. Аналогично, в задаче определения наименее значимого входного сигнала нужно вычислять значимость этого сигнала, а не сумму значимостей весов связей, на которые этот сигнал подается.

Усреднение по обучающему множеству

Показатель значимости параметра Xqp зависит от точки в пространстве параметров, в которой он вычислен и от примера из обучающего множества. Существует два принципиально разных подхода для получения показателя значимости параметра, не зависящего от примера. При первом подходе считается, что в обучающей выборке заключена полная информация о всех возможных примерах. В этом случае, под показателем значимости понимают величину, которая показывает насколько изменится значение функции оценки по обучающему множеству, если текущее значение параметра wp заменить на выделенное значение wp. Эта величина вычисляется по следующей формуле:

(2)

В рамках другого подхода обучающее множество рассматривают как случайную выборку в пространстве входных параметров. В этом случае показателем значимости по всему обучающему множеству будет служить результат некоторого усреднения по обучающей выборке.

Существует множество способов усреднения. Рассмотрим два из них. Если в результате усреднения показатель значимости должен давать среднюю значимость, то такой показатель вычисляется по следующей формуле:

Поделиться:
Популярные книги

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

"Искажающие реальность" Компиляция. Книги 1-14

Атаманов Михаил Александрович
Искажающие реальность
Фантастика:
боевая фантастика
космическая фантастика
киберпанк
рпг
5.00
рейтинг книги
Искажающие реальность Компиляция. Книги 1-14

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Аргумент барона Бронина 4

Ковальчук Олег Валентинович
4. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 4

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Измена. Право на обман

Арская Арина
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на обман

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Бастард Императора. Том 11

Орлов Андрей Юрьевич
11. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 11

Академия чаросвет. Тень

Ярошинская Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Академия чаросвет. Тень

Наследие Маозари 4

Панежин Евгений
4. Наследие Маозари
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Наследие Маозари 4