Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Вопрос третий. Опять о бане, на сей раз русской. Чтобы высушить парилку, нередко открывают в ней окошко, устраивают сквозняк, особенно в мороз. Пар так и валит оттуда внутрь помещения. Как же может этот пар осушить и без того влажное помещение парилки?

Ответ. Здесь хитрость в том, что внешний воздух всегда холоднее воздуха в парилке. Поэтому абсолютная влажность его невысока по сравнению с горячим и влажным воздухом парилки, особенно в мороз, когда вымораживается почти вся влага из воздуха.

Впуская наружный воздух в парилку, мы заменяем влажный воздух на сухой, содержащий в себе мало влаги по абсолютной величине. Нагревшись от мощного камина в русской парилке, воздух приобретает крайне низкую относительную

влажность и быстро высушивает все вокруг. Испаряются все лужи на полатях, простыни становятся сухими. Парилка снова готова к приему голых гостей.

А пар, который валит из окошка, – это не влага, пришедшая снаружи. Холодный воздух охлаждает воздух парилки вокруг себя и сильно повышает его относительную влажность, доводя его до точки росы. Поэтому невидимый нам пар тут же конденсируется в туман, который мы почему-то называем паром. Если приглядеться внимательно, то видно, что туман образуется вокруг входящего в окошко холодного воздуха, а сам морозный воздух – в центре потока – прозрачен. Значит, туман не вносится снаружи, а выпадает из внутреннего воздуха парилки.

Вообще в бане можно наблюдать различные физические явления, и в этом одним из первых убедился сам Архимед!

Вопрос четвертый. Известно, что теплопроводность газов уменьшается с их разрежением. Полный вакуум вообще не может передать тепло – нет вещества, его передающего. Известен и сосуд Дьюара, или попросту термос, где две колбы, вставленные одна в другую, разделены слоем разреженного газа, то есть просто между ними откачан воздух (рис. 254). Это мероприятие позволяет резко сократить теплопередачу между этими двумя колбами.

Однако давайте проведем опыт, где мы будем откачивать воздух между этими колбами и измерять теплопроводность получаемого слоя разреженного газа. Откачали 90 % воздуха – теплопроводность не изменилась. Откачали 99 % воздуха – то же самое. Повысили разрежение еще в 2 – 3 раза – никакого эффекта.

Рис. 254. Сосуд Дьюара – термос

В чем же дело, неужели не работают законы физики? А как же тогда работает термос?

Ответ. Такой эффект, с первого взгляда кажущийся парадоксальным, на самом деле имеет место. Давление падает в сотни раз, а теплопроводность как бы замирает на одной точке. Объясняется это тем, что молекулы оставшегося при разрежении газа, который собственно и переносит тепло от стенки к стенке, получают возможность увеличить свой пробег между столкновениями друг с другом. Самих молекул становится меньше, но путь пробега их между столкновениями увеличивается. Поэтому и теплопроводность почти не изменяется. «Почти» это потому, что для определения этой разницы нужны очень точные методы измерения, практически же эта теплопроводность даже при падении давления в сотни раз не изменяется. Только тогда, когда останутся тысячные и менее доли первоначального количества газа, теплопроводность начнет падать, причем резко. Вот в термосах между колбами как раз очень низкое давление, поэтому-то и теплопроводность этого весьма разреженного газа очень мала.

Кстати, иногда встречается реклама окон, где между стеклами якобы откачан воздух для понижения теплопередачи. К такой рекламе автор относится с сомнением. Не верится, что между большими поверхностями составных пластмассовых рам можно создать достаточно высокий вакуум, как в термосе.

А главное, сами стекла не выдержат при этом огромного наружного давления, реально достигающего нескольких тонн на каждое стекло. Герметизация стекол может препятствовать проникновению влаги между стеклами, что тоже важно, но чтобы откачать между ними воздух, надо иметь толстенные и сверхпрочные, а также очень малоразмерные стекла, что вряд ли приемлемо. Гораздо реальнее просто заполнить пространство между стеклами в герметичных рамах газом, имеющим плохую теплопроводность, заодно и сильно высушенным (обезвоженным).

Вопрос пятый. Вопрос этот не так прост, как может показаться. Сплавим равные части свинца

с температурой плавления 327 °C и олова с температурой плавления 232 °C. Какова будет температура плавления полученного сплава?

Ответ. Напрашивается такой ответ: температура плавления сплава равна средней между температурами плавления компонентов, т. е. 280 °C. Но это не так. Температура плавления сплава, называемого ПОС-50 и широко используемого в пайке, гораздо ниже, причем даже ниже, чем у чистого олова, и находится в интервале 183—209 °C, что с первого взгляда кажется удивительным. Можно привести еще более парадоксальный пример: сплав, состоящий из 50 % висмута с температурой плавления 271 °C, 25 % свинца и по 12,5 % олова и кадмия с температурой плавления последнего 321 °C (так называемый сплав Вуда), имеет температуру плавления всего 68 °C! Этот сплав придуман в 1860 г. английским инженером Вудом (не путать со знаменитым американским физиком Вудом, который родился на 8 лет позже года изобретения сплава!). Известен сплав почти из тех же компонентов, называемый анатомическим, который плавится вообще при 60 °C! Здесь уместно рассказать про шутку зубных техников, широко использующих эти сплавы. Они отливают чайную ложку из таких сплавов и подсовывают ничего не подозревающему гостю при чаепитии. Ложка, почти как серебряная, такая же тяжелая и блестящая. Но, когда гость начинает помешивать ею горячий чай, она плавится в стакане, и в руках у изумленного гостя остается только «огрызок» ручки (рис. 255)!

Рис. 255. Ложка из металла Вуда плавится в стакане с горячим чаем

Свойство сплавов плавиться легче составляющих компонентов обусловливается эвтектикой, и оно хорошо известно металловедам. Эвтектоидами в металловедении называются сплавы с такими количественными соотношениями компонентов, которые обеспечивают минимальную температуру плавления. Отмеченные выше сплавы являются яркими примерами сплавов, очень близких к эвтектоидным для данных компонентов.

Если вы правильно ответили на все вопросы, – вы гений, и вам можно дальше не читать, вы и так все знаете. Если не ответили ни на один вопрос, – не огорчайтесь и попробуйте задать их товарищам и родителям; автор надеется, вы будете удовлетворены их ответами. Если же вы ответили самостоятельно хотя бы на часть вопросов – поступайте в университет на физический факультет, ваши преподаватели будут довольны вами, а вы – ими.

Лучшая печь – это холодильник!

Это не шутка и не розыгрыш. Действительно, самая экономичная и экологичная печь (например, для отапливания домов) – это холодильник. Обычный домашний, лучше безмоторный (он сложно называется – абсорбционный), такие выпускались под названием «Иней» или «Морозко». Он не шумит и служить будет 100 лет. Печкой, разумеется. Вот как автор сам убедился в том, что холодильник может отлично работать печкой, и кое в чем другом, тоже полезном для ума и нужном в хозяйстве.

Однажды автору подарили необычный холодильник, кажется, «позаимствованный» с корабля. Агрегат этого холодильника был раздельным: мотор, компрессор и теплообменник – одним узлом, а испаритель, или иначе – морозильная камера, – другим, соединенным с первым длинными медными трубками. При этом морозильную камеру автор поставил на кухне охлаждать продукты, а силовой блок с теплообменником грохотал в чулане.

За месяц «общения» с этим холодильником автор сделал удивительные открытия. Оказывается, температура на кухне была ниже, чем в других комнатах, а в чулане с теплообменником была настоящая сауна. При этом стоило вынуть из морозильной камеры охлажденные продукты и заложить новые, еще «теплые» (особенно бутылки с пивом и водой), как теплообменник буквально раскалялся.

Напротив, если начинали охлаждать теплообменник, например, обдувая вентилятором, продукты в морозильнике охлаждались гораздо быстрее. Особенно сильно он начинал морозить, если вешали на теплообменник мокрое полотенце.

Поделиться:
Популярные книги

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Купи мне маму!

Ильина Настя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Купи мне маму!

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

По машинам! Танкист из будущего

Корчевский Юрий Григорьевич
1. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.36
рейтинг книги
По машинам! Танкист из будущего

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода