Чтение онлайн

на главную - закладки

Жанры

Шрифт:

а = a0/ 2n,

где ао — начальная радиоактивность.

Здесь надо пояснить, что радиоактивность а — это число атомов, распадающихся в образце в единицу времени; радиоактивность пропорциональна имеющемуся числу атомов, поэтому она изменяется со временем так же, как и N.

На практике радиоактивность образца обычно характеризуют не общим числом происходящих в нем распадов, а пропорциональным ему числом импульсов I, которые регистрирует прибор, измеряющий радиоактивность (I= ка, где к — коэффициент пропорциональности). Очевидно, что и в этом случае формула имеет вид

I=I0/2n

По

приведенным формулам можно определить, сколько останется радиоактивного вещества через определенное время или какова будет его активность, если известны период полураспада и начальное количество (или начальная активность) радионуклида. С другой стороны, зная начальную и конечную активность, а также время t, можно определить период полураспада.

Следует отметить, что приведенные формулы верны не только для целых, но и для дробных значений п. Правда, при нецелых п для расчетов потребуется знание логарифмов и использование калькулятора, производящего действия со степенями и логарифмами. Если же n — целое (т. е. прошло целое число периодов полураспада), то расчеты значительно упрощаются и часто их можно проделать даже в уме.

В качестве примера решим такую задачу. В лабораторию для биохимических исследований доставили препарат, меченный фосфором-32 (для этого радионуклида Т1/2 = 2 недели). Начальная активность образца составляла 512 импульсов в минуту в расчете на 1 мкг препарата. Можно ли будет использовать этот препарат для исследований через 12 недель, если для надежного измерения активность препарата должна быть не ниже 10 импульсов в минуту на 1 мкг?

Для решения этой задачи рассчитаем активность препарата к указанному сроку. По условию Iо = 512 имп./(мин х мкг), Т1/2 = 2 недели, t = 12 недель, п = 12/2 = 6. Подставляем эти значения в формулу и получаем, что через 12 недель (примерно 3 месяца) активность снизится до I= 512 / 26 = 512 / 64 = 8 имп.(мин х мкг). Следовательно, сотрудникам лаборатории отпущен сравнительно небольшой срок для решения стоящих перед ними научных задач — через 3 месяца придется заказывать новую партию дорогостоящего препарата. Отметим, что активность препарата, конечно, зависит от его общего количества, поэтому она отнесена к 1 микрограмму вещества; эта активность могла быть задана и в любых других единицах. Разумеется, числовые данные в этой задаче специально подобраны так, чтобы предельно облегчить расчеты. Например, если бы t было равно не 12, а, допустим, 12,8 неделям, пришлось бы возводить 2 в степень 12,8 / 2 = 6,4, что невозможно без калькулятора.

А вот более важный пример. Во время чернобыльской аварии из горящего реактора было выброшено большое количество очень опасного для человека радионуклида иод-131 1/2 = 8 суток). Опасен ли сейчас этот радионуклид? Поскольку с момента аварии прошло более 20 лет (т. е. более 900 периодов полураспада), количество иода-131 уменьшилось более чем в 2900 (или в 10400) раз. Это означает, что если бы в момент аварии (апрель 1986 года) вся Вселенная состояла только из иода-131, то уже через несколько лет от него не осталось бы ни единого атома!

Подобные расчеты для ученых не представляют большою труда. А вот точное и надежное измерение очень малых активностей является серьезной проблемой, которая занимает ученых уже целое столетие — с момента открытия самого явления радиоактивности. Повысив точность измерений слабых радиоактивных излучений, они добились значительных успехов в определении возраста многих археологических находок. Один из самых ярких примеров — радиоуглеродный метод анализа, о котором речь пойдет ниже.

Что такое радиоуглерод и откуда он берется

Вы. возможно, слышали или читали, что наша планета подвергается непрерывному облучению космическими частицами. Если бы не атмосфера, пропускающая к земной поверхности лишь небольшую часть космического излучения, жизнь на Земле была бы невозможна, а ее поверхность мало отличалась бы от поверхности

Луны. В верхних слоях атмосферы под действием космических лучей идут самые разнообразные превращения одних элементов в другие. Одно из них — превращение атомов азота в атомы радиоактивного углерода-14. Подсчитано, что каждую минуту над 1 см2 земной поверхности образуется в среднем всего 145 атомов 14С. Если учесть площадь поверхности Земли, то получится, что ежегодно в атмосфере образуется примерно 8 кг радиоуглерода. Земля, как известно, существует миллиарды лет, и если бы углерод-14 был стабилен, то его масса на Земле исчислялась бы десятками миллионов тонн. Однако он радиоактивен и в результате распада снова превращается в азот. Период полураспада 14С довольно велик и составляет 5730 лет. Всего на Земле имеется 60 тонн радиоуглерода, из которых ежегодно распадается 8 кг — столько же, сколько его образуется (в этом случае говорят о радиоактивном равновесии, при котором скорость образования нуклида равна скорости его распада). Конечно, для земного шара 60 тонн — это очень малая величина; причем, в атмосферном углекислом газе количество радиоуглерода составляет лишь около 1 тонны, или 3 х 10– 11 % от «обычного» углерода 12С (остальной радиоуглерод в основном растворен в воде).

Большинству из вновь образованных атомов 14С предстоит долгая жизнь — на многие тысячи лет. Какая их ждет судьба?

Прежде всего они довольно быстро окислятся кислородом и превратятся в молекулы углекислого газа. Этот радиоактивный углекислый газ равномерно перемешается с огромным количеством обычного углекислого газа. Известно, что углекислый газ атмосферы — основной источник углерода, который усваивается растениями в процессах фотосинтеза. Растениями питаются животные, поэтому вся живая органическая материя содержит радиоуглерод, хотя и в ничтожных количествах. Очень важно, что в результате обменных процессов, протекающих в природе, содержание 14С в растениях и животных на протяжении их жизни остается постоянным. Но как только обмен с окружающей средой прекращается, содержание радиоуглерода начинает медленно снижаться — в 2 раза каждые 5730 лет, как это показано на рис. 7.3.

Рис. 7.3. Так уменьшается со временем количество радиоуглерода в образце, если в него не попадает «свежий» 14С из атмосферы

«Радиоуглерод» входит также в состав неорганических соединений, которые растворены в воде морей и океанов, в подземных водах и могут обмениваться углеродом с углекислым газом атмосферы. В основном это растворимые гидрокарбонаты, которыми так богаты минеральные воды.

Как только в животном или растении обмен с углекислым газом атмосферы прекращается, количество радиоуглерода в нем со временем начинает убывать в соответствии со строгой математической зависимостью.

Подробное рассмотрение закономерностей образования и распада радиоуглерода позволило американскому физикохимику Уилларду Франку Либби (1908–1980) совершить в конце 40-х годов выдающееся открытие, за которое через несколько лет он получил Нобелевскую премию по химии «За введение метода использования углерода-14 для определения возраста в археологии, геологии, геофизике и других областях науки».

Радиоуглеродный метод датировки

В 1955 году в Женеве состоялась Международная конференция по мирному использованию атомной энергии. Выступил на ней с докладом и Либби. Его выступление началось необычно. Он вышел на трибуну с большим чемоданом, вынул из него старую обувь и объявил, что ее носил вождь инков 800 лет назад. Затем извлек из чемодана обломок весла и сказал, что это весло изготовлено в Древнем Египте 3000 лет назад. Каким образом удалось это определить? Теоретические основы радиоуглеродного метода датировки довольно просты. Однако для их практического использования пришлось провести очень большую работу, которую нельзя считать законченной и к настоящему времени, как это будет видно из приведенных примеров.

Поделиться:
Популярные книги

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Виконт. Книга 4. Колонист

Юллем Евгений
Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.50
рейтинг книги
Виконт. Книга 4. Колонист

Метатель. Книга 8

Тарасов Ник
8. Метатель
Фантастика:
боевая фантастика
попаданцы
постапокалипсис
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Метатель. Книга 8

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Офицер империи

Земляной Андрей Борисович
2. Страж [Земляной]
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.50
рейтинг книги
Офицер империи

Вперед в прошлое 10

Ратманов Денис
10. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 10

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Страж Кодекса. Книга V

Романов Илья Николаевич
5. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга V

Под крылом ворона

Шебалин Дмитрий Васильевич
3. Чужие интересы
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Под крылом ворона

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Потомок бога

Решетов Евгений Валерьевич
1. Локки
Фантастика:
попаданцы
альтернативная история
аниме
сказочная фантастика
5.00
рейтинг книги
Потомок бога

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара