Удивительная логика
Шрифт:
=> Скорее всего, выпущенные сочинения Фрэнсиса Бэкона, как и сочинения Секста Эмпирика, имеют объем в 590 страниц.
Несмотря на вероятностный характер выводов, умозаключения по аналогии имеют немало достоинств. Аналогия представляет собой хорошее средство иллюстрации и разъяснения какого-либо сложного материала, является способом придания ему художественной образности, часто наводит на научные и технические открытия. Так, на основе аналогии отношений построены многие выводы в бионике – науке, которая занимается изучением объектов и процессов живой природы для создания различных технических приспособлений. Например, построены машины-снегоходы, принцип передвижения которых заимствован у пингвинов. Используя особенность восприятия медузой инфразвука с частотой 8—13 колебаний в секунду (что позволяет ей заранее распознавать приближение бури по штормовым инфразвукам),
Как видим, умозаключения по аналогии достаточно широко используются как в повседневном, так и в научном мышлении.
Основные законы логики
Равна ли мысль самой себе (Закон тождества)
Первый и наиболее важный закон логики – это закон тождества, который был сформулирован Аристотелем в трактате «Метафизика» следующим образом: «…иметь не одно значение – значит не иметь ни одного значения; если же у слов нет (определенных) значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности – и с самим собой; ибо невозможно ничего мыслить, если не мыслить (каждый раз) что-нибудь одно». Можно было бы добавить к этим словам Аристотеля известное утверждение о том, что мыслить (говорить) обо всем – значит не мыслить (не говорить) ни о чем.
Закон тождества утверждает, что любая мысль (любое рассуждение) обязательно должна быть равна (тождественна) самой себе, т. е. она должна быть ясной, точной, простой, определенной. Говоря иначе, этот закон запрещает путать и подменять понятия в рассуждении (т. е. употреблять одно и то же слово в разных значениях или вкладывать одно и то же значение в разные слова), создавать двусмысленность, уклоняться от темы и т. п.
Например, смысл простого на первый взгляд высказывания Ученики прослушали объяснение учителя непонятен, потому что в нем нарушен закон тождества. Ведь слово прослушали, а значит, и все высказывание можно понимать двояко: то ли ученики внимательно слушали учителя, то ли все пропустили мимо ушей (причем первое значение противоположно второму). Получается, что высказывание было одно, а возможных значений у него два, т. е. нарушается тождество: 1 /= 2. Иначе говоря, в приведенном высказывании смешиваются (отождествляются) две различные (нетождественные) ситуации.
Точно так же непонятен смысл фразы Из-за рассеянности на турнирах шахматист неоднократно терял очки. Если не сделать в данном случае никаких комментариев, то непонятно, о чем идет речь: то ли шахматист терял очки как прибор для зрения, то ли – как спортивные баллы; две нетождественные ситуации представляются в этом высказывании как тождественные.
Итак, по причине нарушения закона тождества появляются подобного рода неясные высказывания (суждения).
Когда закон тождества нарушается непроизвольно, по незнанию, по невнимательности или по безответственности, тогда возникают просто логические ошибки; но когда этот закон нарушается преднамеренно, с целью запутать собеседника и доказать ему какую-нибудь ложную мысль, тогда появляются не просто ошибки, а софизмы – внешне правильные доказательства ложной мысли с помощью преднамеренного нарушения логических законов. Приведем пример софизма: 3 и 4 – это два разных числа, 3 и 4 – это 7, следовательно, 7 – это два разных числа. В данном случае, как и в вышеприведенных примерах, происходит отождествление нетождественного: неявно или исподволь смешиваются, уравниваются, представляются как одинаковые разные, неравные, неодинаковые ситуации (простое перечисление чисел и сложение чисел), что и приводит к видимости правильного доказательства ложной мысли.
Обратите внимание, любой софизм, даже очень хитрый, строится по одной и той же схеме – неявно отождествляются нетождественные ситуации, объекты, явления, события, идеи и т. п., что и приводит к внешней правдоподобности ложных рассуждений. Поэтому алгоритм разоблачения какого угодно софизма достаточно прост: надо всего лишь найти в рассуждении два объекта, которые, будучи нетождественными, незаметно отождествляются.
Приведем еще один пример софизма: Что лучше: вечное блаженство или бутерброд? Конечно же, вечное блаженство.
На нарушениях закона тождества строятся не только неясные суждения и софизмы. На них можно создать разного рода комические эффекты. Например, Н. В. Гоголь в поэме «Мертвые души», описывая помещика Ноз-древа, говорит, что тот был «историческим человеком», потому что, где бы он ни появлялся, с ним обязательно случалась какая-нибудь «история».
На нарушении закона тождества построены многие смешные афоризмы. Например: Не стой где попало, а то еще попадет.
Тот же принцип лежит в основе многих анекдотов. Например:
– Я сломал руку в двух местах.
– Больше не попадай в эти места.
Или такой анекдот:
– У вас в гостинице есть тихие номера?
– У нас все номера тихие, только вот постояльцы иногда шумят.
Как видим, во всех приведенных примерах используется один и тот же прием: в одинаковых словах смешиваются различные значения, ситуации, темы, одна из которых не равна другой.
Приведем в качестве примеров еще несколько анекдотов, построенных на нарушениях закона тождества.
1. – Ты умеешь нырять?
– Умею.
– И долго под водой находишься?
– Пока кто-нибудь не вытащит.
2. – Ах, эти детские мечты. Сбылась ли хоть одна из них?
– У меня да. В детстве, когда мама меня причесывала, я мечтал, чтобы у меня не было волос.
3. Учитель – ученику:
– Почему ты опоздал сегодня в школу?
– Я хотел пойти утром с отцом на рыбалку, но он меня с собой не взял.
– Надеюсь, отец тебе объяснил, почему ты должен идти в школу, а не на рыбалку?
– Да, он сказал, что червей мало и на двоих не хватит.
4. Бабушка говорит внуку о вреде курения, однако он возражает:
– Вот дедушка всю жизнь курит, а ему уже 80 лет!
Бабушка парирует:
– А если бы не курил, то было бы 90!
5. На экзамене преподаватель – студенту:
– Ваша фамилия?
– Иванов.
– А чему вы улыбаетесь?
– Я радуюсь!
– Чему именно?
– Тому, что правильно ответил на первый вопрос.
6. Когда нашей бабушке было 60 лет, она стала ходить по 5 километров каждый день. Теперь ей 80, и мы понятия не имеем, где она.
7. Прапорщик – рядовому:
– Я смотрю, товарищ солдат, вы слишком умный!
– Кто, я?
– Ну не я же!
– Извини, я не знал, что она твоя – на ней написано «общая».
9. Встречаются два человека:
– Петя! Сколько лет, сколько зим! Как ты изменился – борода, усы, очки…
– Я не Петя!
– Вот это да! Ты уже и не Петя!
10. Мать – дочери:
– Дочка, этот парень хромой, косой… И к тому же полный сирота. Не надо выходить за него замуж!
– А я за красотой не гонюсь, мама!
– Да я не о том, дочка. Парню и так тяжело в жизни пришлось. Пожалей человека!
Нарушение закона тождества также лежит в основе многих известных нам с детства задач и головоломок. Например, мы спрашиваем собеседника: «Зачем (за чем) находится вода в стеклянном стакане?» – преднамеренно создавая двусмысленность в этом вопросе (зачем – «для чего» и за чем – за каким предметом, где). Собеседник отвечает на один вопрос, например он говорит: «Чтобы пить, поливать цветы», а мы подразумеваем другой вопрос и, соответственно, другой ответ: «За стеклом».
Предложим нашему собеседнику такую задачу: «Как 12 разделить таким образом, чтобы получилось 7 без остатка?».
Он, скорее всего, станет решать ее так: 12: х = 7; х = 12: 7; х = ? – и скажет, что она не решается – 12 невозможно разделить так, чтобы получилось семь, да еще и без остатка.
На это мы возразим ему, что задача вполне разрешима: изобразим число 12 римскими цифрами: XII, а потом одной горизонтальной чертой разделим эту запись: – ХII-; как видим, сверху получилось семь (римскими цифрами) и снизу тоже семь, причем без остатка.
Понятно, что эта задача является софистической и основана на нарушении закона тождества, ведь ее математическое решение не тождественно графическому.