Удивительный мир птиц. Легко ли быть птицей?
Шрифт:
Большинство сов – ночные птицы. Следовательно, им важно хорошо видеть в темноте, главным образом для того, чтобы обходить препятствия, а не высматривать добычу, поскольку на охоте совы полагаются в основном на слух. Ключевой вопрос для ночных сов – чувствительность их глаз. Для того чтобы выяснить минимальный уровень освещения, при котором совы способны видеть, Грэм Мартин провел ряд поведенческих тестов с ручными серыми неясытями – одним из немногих видов, о которых в настоящее время имеется подобная информация. На протяжении нескольких месяцев неясытей приучали клевать пластинку, помещенную перед двумя экранами, на которые проецировался свет разной интенсивности. Если птицы замечали свет, им в награду давали немного пищи. Тот же самый опыт (только без пищевого подкрепления) Мартин проводил с участниками-людьми, чтобы иметь возможность сделать прямое сравнение. Как и следовало ожидать, неясыти оказались более чувствительными, чем люди, и в среднем способными заметить гораздо более низкие уровни освещения, чем большинство людей, хотя несколько участников-людей превзошли чувствительностью неясытей [47] .
47
Martin (1990).
Глаза
Сравнение с птицами, ведущими строго дневной образ жизни, например с голубем, показывает, что чувствительность к свету у серой неясыти примерно в сто раз выше, чем у голубя. То есть неясыть видит в условиях плохой освещенности гораздо лучше, чем голубь, и этим объясняются настолько успешные действия неясытей по ночам. Среди бела дня у голубя и серой неясыти острота зрения примерно одинакова, что, вопреки убеждению некоторых людей, доказывает: дневной свет не создает неблагоприятных условий для неясытей. Поскольку глаза неясыти рассчитаны скорее на максимальную чувствительность, чем на высокое разрешение, она способна видеть при низкой освещенности довольно хорошо, но не очень отчетливо. Для сравнения: пространственное разрешение – способность различать мелкие детали – у дневных хищников, таких как воробьиная пустельга и австралийский бурый сокол, в пять раз выше, чем у серой неясыти [48] .
48
Ibid.
Одним из самых поразительных орнитологических открытий последнего времени стало то, что птицы пользуются своим левым и правым глазом для разных задач. Как и у людей, головной мозг птиц разделен на два полушария, правое и левое. Из-за особенностей расположения нервов левая половина мозга обрабатывает информацию от правой стороны тела и наоборот. То, что разные стороны мозга имеют дело с различными типами информации, впервые было признано в 1860-х годах французским врачом Пьером Брока: он обследовал человека с дефектом речи, а после смерти пациента при его вскрытии обнаружил, что левое полушарие мозга серьезно повреждено в результате сифилиса. Постепенно подобных случаев выявлялось все больше, они подтверждали, что левое и правое полушария мозга действительно обрабатывают информацию разного рода. Этот эффект получил название «функциональной межполушарной асимметрии» (или латерализации функций мозга, буквально «сторонности») и на протяжении примерно ста лет считался присущим только человеку. Но в начале 1970-х, во время исследования, посвященного способу, которым канарейки овладевают навыками пения, выяснилось, что функциональная межполушарная асимметрия наблюдается и у птиц. Канарейки и другие птицы издают звуки с помощью сиринкса – органа, подобного нашей гортани. Фернандо Ноттебом обнаружил, что нервы левой стороны сиринкса канарейки (следовательно, правой половины мозга) не играют роли в пении, в то время как нервы правой стороны – играют, и это позволило предположить, что приобретение навыков пения птицами, как и навыков речи человеком, зависит от одного полушария мозга в большей степени, чем от другого. Дальнейшие исследования полностью подтвердили правильность этой гипотезы [49] .
49
Nottebohm (1977); Rogers (2008).
Более того, птицы продолжали играть главную роль в изучении межполушарной асимметрии, и к настоящему моменту уже признано, что асимметричность функций головного мозга способствует обработке информации, эффективно помогая индивидам пользоваться несколькими источниками информации одновременно.
Латерализация может проявляться двумя различными путями. Во-первых, применительно к отдельным особям: люди, попугаи и некоторые другие животные могут демонстрировать латерализацию функций, будучи лево- или праворукими или лево- или праволапыми (попугаи). Во-вторых, функциональная латерализация может наблюдаться у вида в целом, как у домашней птицы, которая, как мы увидим далее, обычно высматривает крылатых хищников левым глазом [50] .
50
Томас Мор (Thomas More, 1653) упоминает, что попугаи преимущественно левши; см. также Harris (1969) и Rogers (2004). Преимущественное использование правой или левой лапы у клестов, впервые отмеченное Таунсоном (Townson, 1799, процитировано в Knox, 1983), ассоциируется с перекрещенными кончиками их клюва, приспособленного к извлечению семян из сосновых шишек. Половина популяции клеста-еловика «левоклювая», то есть нижняя часть клюва пересекается с верхней слева; остальные птицы «правоклювые». Как пишет Нокс (Knox, 1983), «птица держит шишку таким образом, что основная нагрузка приходится на лапу со стороны, противоположной той, в которой перекрещено подклювье [нижняя часть клюва]. Следовательно, левоклювая птица – «праворукая». У праворуких птиц более длинная правая нога и более развиты
Разумеется, для людей типична праворукость или леворукость; кроме того, для нас свойствен ведущий глаз – примерно у 75 % людей это правый, хотя обычно мы не сознаем, что глаза служат нам по-разному. Однако у тех птиц, глаза которых размещены латерально, то есть по бокам головы, они используются для разных задач. Так, суточные цыплята домашней птицы обычно пользуются правым глазом, рассматривая что-либо вблизи, например, когда кормятся, и левым глазом – когда требуется смотреть вдаль, например в поисках хищников. Более того, в ходе одного оригинального поведенческого теста, когда один глаз временно закрывали пластырем, выяснилось, что птицы справляются с определенными задачами гораздо лучше, когда видят каким-то одним глазом, в том числе синицы и обыкновенные сойки лучше вспоминают, где спрятали пищу [51] .
51
Rogers (2008).
Нам известно даже, как именно возникает это дифференцированное использование глаз у птиц. Ведущий исследователь функциональной межполушарной асимметрии у птиц Лесли Роджерс из Австралии часто задумывался о том, как появляется этот феномен. Вот что Лесли рассказал мне:
Все мои коллеги полагали, что он определяется генетически, но я в этом сомневался. А потом однажды [в 1980 году], рассматривая снимки куриного зародыша, я заметил, что в последние дни инкубации зародыш поворачивает голову влево так, чтобы прикрытым оказался левый, а не правый глаз. У меня возникла мысль, что свет, достигающий правого глаза через скорлупу и мембраны, может обусловливать латерализацию, связанную со зрением. И я сравнил яйца, инкубировавшиеся в темноте, с теми, которые подвергались воздействию света в последние несколько дней инкубации, и убедился в справедливости моего предположения. В дальнейшем я доказал, что можно даже изменить направление латерализации, вынув из яйца голову зародыша на последней стадии развития и прикрыв правый глаз, а левый подставив свету [52] .
52
Лесли Роджерс – в частной беседе.
Поразительно, как разница в количестве света, который получает каждый глаз во время нормального развития зародыша (левый – довольно мало, правый – гораздо больше), определяет последующую роль каждого глаза. В ходе эксперимента цыплята, развивавшиеся в яйцах в полной темноте (для того чтобы избежать сдвига влево или вправо в количестве света, который получает каждый глаз), продемонстрировали отсутствие подобной разницы в использовании глаз, как только вылупились. Более того, эти цыплята оказались менее способными выполнять две задачи одновременно (обнаруживать хищников и находить корм), чем цыплята, вылупившиеся из яиц после инкубации в нормальных условиях [53] .
53
Rogers (1982).
Следствия из этого удивительного открытия колоссальны и еще не изучены. Вспомним виды птиц, гнездящиеся в дуплах и норах: иногда они устраивают гнезда в глубоких, совершенно темных укрытиях, а иногда – в неглубоких и хорошо освещенных. В первом случае нет возможности для развития функциональной межполушарной асимметрии, в то время как во втором она есть, следовательно, потомство будет более «качественным», потому что окажется более способным. Если так, тогда разница в условиях, в которых были выведены птенцы, могла бы многое объяснить относительно индивидуальных различий в поведении и особенностях характера птиц. Можно рассчитывать, что отдельные особи в ходе брачных ритуалов будут демонстрировать, насколько велика их функциональная латерализация, так как птицы с выраженной межполушарной асимметрией более способны, следовательно, как партнеры они неизбежно превосходят остальных. Замечательный проект для начинающего орнитолога!
Такие различия в роли глаз нам трудно вообразить, однако они, возможно, проявляются у всех птиц, пусть даже по-разному. К примеру, птенцы домашней птицы смотрят левым глазом при приближении к родителям. Самцы ходулочника с большей вероятностью подходят во время брачной церемонии к самкам, которых видят левым, а не правым глазом. Кривоносый зуёк из новозеландских ржанковых уникален среди птиц тем, что его клюв загнут вправо; с его помощью зуёк переворачивает камни в поисках беспозвоночных – либо потому, что его правый глаз лучше приспособлен для поисков корма на близком расстоянии, либо потому, что левый более пригоден для высматривания потенциальных врагов, или справедливо и то и другое. Когда сапсаны охотятся, они налетают на добычу, описывая в воздухе широкую дугу, а не прямую линию, и пользуются главным образом своим правым глазом [54] . Новокаледонские вороны, известные умением изготавливать орудия – крючки из пальмовых листьев, – демонстрируют выраженную индивидуальную склонность к изготовлению орудий либо из правой, либо из левой стороны листа. Аналогично, при использовании этих орудий, чтобы зацепить и извлечь добычу из щелей и трещин, вороны выказывают индивидуальные предпочтения левой или правой стороны, однако в популяции в целом не было выявлено склонности к левой или правой сторонам [55] .
54
Rogers (2008); см. также Tucker (2000), Tucker et al. (2000).
55
Weir et al. (2004); см. также Rogers et al. (2004).