Удивительный мир звука
Шрифт:
В наше время, в период интенсивного освоения Мирового океана, гидроакустические приборы и методы достигли высокой степени совершенства, а области применения гидроакустической техники все расширяются.
Разумеется, проще всего было бы отослать читателя к соответствующим источникам, например к книгам автора по гидроакустике. Но из песни слова не выкинешь, а потому и в этой книжке, где трактуются самые различные акустические вопросы, следует сказать несколько слов о звуках под водой, понимая под этим преимущественно звуки в больших природных водоемах.
Начнем с краткого описания некоторых физических
Рефракция. Это, как известно, искривление лучей в среде с переменным показателем преломления. Сплющенная Луна, миражи в пустыне, плавающие в воздухе острова над морем -- классические примеры оптической рефракции в воздухе. Акустическую рефракцию в воздухе заметить несколько труднее, но она тоже имеет место. А вот под водой звуковая рефракция проявляется в любое время года практически повсеместно.
У гидроакустиков есть хорошее мнемоническое правило: луч, подобно жаждущему человеку, устремляется в сторону более холодных и менее соленых слоев воды. Есть, правда, еще один фактор, который труднее втиснуть в рамки мнемоники. Это гидростатическое давление, зависящее от глубины. От его величины также меняется скорость звука, а следовательно, и показатель преломления. В данном случае его изменение таково, что звуковой луч стремится вверх.
Пожалуй, особенно отчетливо проявляется влияние температуры зимой, когда верхние слои морской воды более холодные, чем нижние. Луч тогда под определенным углом устремляется к поверхности моря, отражается от нее, вновь и вновь приходит к ней, постепенно затухая по мере удаления от источника звука.
Художник-орнаменталист, пожалуй, мог бы позаимствовать в картинах подводных звуковых лучей мотивы для своих работ.
Траектория его напоминает цепь, подвешенную во многих местах к буйкам на поверхности моря. Условия для подводного обнаружения звука в поверхностных слоях при этом достаточно хорошие.
В летнее время, когда более холодными являются глубинные слои воды, луч уходит в глубину. Образуются зоны акустической тени, в которых обнаружение подводных объектов затруднено. Возможны сопутствующие эффекты. На границе слоев с резким перепадом температуры может происходить полное внутреннее отражение, расщепление луча, когда небольшая часть звука проходит под слой скачка, а другая часть отклоняется кверху. Создаются не только "мертвые зоны", как иногда именуют флотские акустики зоны акустической тени, но и зоны фокусировки, усиления звука. В общем, картина распространения звука может быть очень пестрой.
Звуковые каналы. Совместное влияние температуры, солености воды, гидростатического давления может быть таким, что на определенной глубине расположится зона ("горизонт") с минимальной скоростью звука. По этому горизонту, претерпевая лишь небольшие волнообразные отклонения, звуковой луч может распространяться на очень большие расстояния. Эта зона дальнего и сверхдальнего распространения звука условно названа звуковым каналом. Звуковой канал в океане был открыт американскими акустиками, а в глубоком море (Черном)--советскими учеными Л. М Бреховских и Л. А. Розенбергом.
За эту работу они удостоены Государственной премии СССР.
Были отмечены случаи распространения звука взрыва небольшой бомбы по подводному звуковому каналу от берега Австралии до
Американский акустик Э. Гамильтон предсказал теоретическую возможность существования звукового канала также в осадочных породах, выстилающих дно океана. В 1974 году Р. Урик экспериментально подтвердил это.
Морская реверберация. Словом "реверберация", соответствующим английскому слову "эхо", обозначают более или менее продолжительное угасающее звучание звукового сигнала после излучения. В наибольшей степени это явление обычно связано с отражениями от скоплений газовых пузырьков, затянутых на некоторую глубину во время штормов или являющихся продуктом жизнедеятельности планктона. В мелководных районах реверберация может быть обусловлена отражениями от каменистого дна. Реверберация иногда является серьезной помехой рыболокации и военно-морской гидролокации, так как она может маскировать принимаемый полезный эхо-сигнал.
Интересно наблюдать реверберацию, когда она достаточно интенсивна. Всплески ее то вспыхивают, то гаснут на катодном индикаторе локатора, порой на расстояниях в несколько километров. Синхронно с этим меняется реверберация в динамике. Это значит, что гидролокационная посылка встретилась с каким-то отражающим звук скоплением, а затем проследовала далее.
Первая отечественная работа по реверберации моря появилась в Журнале технической физики в 1943 году, в самый разгар Великой Отечественной войны. Автором ее был военно-морской акустик В. С. Анастасевич. Трудно забыть впечатление, которое произвела эта статья на молодых акустиков. Неужели открытое море может звучать, как готический собор? И причина этому -какие-то пузырьки... (уже известно было, что пузырьки в воде могут поглощать звук, но о рассеивающих их свойствах мало кто знал).
Исследования реверберации выполнялись Ю.М.Сухаревским. Впоследствии В. В. Ольшевский дал основы статистической теории реверберации.
Для борьбы с реверберационной помехой используют излучение в узком секторе, частотную модуляцию сигнала и другие приемы. В общем, если исключить малые расстояния от гидролокатора, реверберационная помеха оказывается не такой страшной, как "тривиальные" помехи от шумов морского волнения, а также от шумов самого корабля, несущего гидролокатор.
Звукорассеивающие слои. Когда однажды исследователи-гидроакустики в одном из южных районов попробовали устремить луч гидролокатора вниз, то к своему удивлению обнаружили: дно океана "писалось" на глубине, в несколько раз меньше действительной. Феномен "поднимающегося и опускающегося дна" отметили и специалисты по эхолотированию. Ясно было, что существуют какие-то мигрирующие слои, которые отлично отражают звук, причем в значительно большей мере, чем его отражает, например, водный слой с температурным скачком.