Чтение онлайн

на главную - закладки

Жанры

Уставы небес, 16 глав о науке и вере
Шрифт:

При таком понимании слова "субъективность" нет противоречия между взглядами Канта и позицией многих естествоиспытателей и математиков (включая самых великих, таких, как Гаусс и Эйнштейн), настаивавших на объективности и реальности пространства, то есть на независимости его существования и свойств от ума человека:

Мы должны признать, что хотя число есть только продукт нашего ума, пространство есть реальность и вне нашего ума, которой мы не можем приписывать всецело закона a priori (К.Ф. Гаусс, письмо Бесселю, 9.4.1830).

Конечно, ум не может предписывать самому себе те правила и формы, по которым он познает мир.

Но, скажут, есть все-таки настоящая

прямая, т.е. по учебнику геометрии [евклидовой].
– В том то и дело, что такая постановка возражения лишена смысла: прямая не есть вещь, а - наше понятие о действительности. И если мы не можем раскрыть конкретное содержание этого понятия, объем же применения его равен нулю, то такого понятия нет... (П.А. Флоренский, Анализ пространственности и времени в художественно-изобразительных произведениях, с.16-17).

Взгляды Канта на пространство оказались в значительной степени "скомпрометированы" среди физиков и математиков тем обстоятельством (несущественным для глубинного смысла его философии), что он считал положения евклидовой геометрии самоочевидными, то есть внутренне присущими человеческому мышлению. Открытие в начале XIX века внутренне непротиворечивых неевклидовых геометрий (Н.И. Лобачевский, Я. Бойяи, К. Гаусс) и разработка Б. Риманом более общего подхода к геометрии, включавшего как евклидову, так и неевклидовы ситуации в качестве частных случаев, нанесло серьезный удар по таким взглядам. Встал вопрос о геометрии реального (физического) пространства. При этом Лобачевский, Гаусс и Риман считали, что этот вопрос должен в конечном счете решаться экспериментально; Гаусс даже проводил геодезические измерения высокой точности с целью проверить теорему евклидовой геометрии о равенстве суммы углов треугольника 180 градусам. Разумеется, при таком подходе прямая воспринимается как нечто существующее "объективно" , вопреки процитированному выше предостережению Флоренского, но в полном соответствии с практикой геодезических и астрономических измерений. Действительно, в этих случаях отрезками прямых считаются траектории светового луча в пустоте или в однородной прозрачной среде; да и прямизна обычных линеек тоже проверяется "на свет". Другой привязкой геометрии к опыту служит следующие утверждения относительно твердых тел:

Твердые тела ведут себя в смысле различных возможностей взаимного расположения, как тела евклидовой геометрии трех измерений; таким образом, теоремы евклидовой геометрии содержат в себе утверждения, определяющие поведение практически твердых тел (А. Эйнштейн, Собр. научен. трудов, т. 2, с. 85).

Если бы не было твердых тел в природе, не было бы и геометрии (А. Пуанкаре, О науке, с. 48).

Впрочем, подход А. Пуанкаре к геометрии отличался в одном важном отношении от изложенного выше. Согласно Пуанкаре, любая геометрия - это чисто логическая конструкция, экспериментальной проверке всегда подлежит лишь совокупность "геометрия+физика". Так, если бы в своих геодезических измерениях Гаусс обнаружил отклонения от геометрии Евклида (чего в действительности не произошло), мы все равно могли бы сохранить последнюю в неприкосновенности, изменив законы оптики, то есть отказавшись от закона прямолинейного распространения света в однородной прозрачной среде:

Если мы теперь обратимся к вопросу, является ли евклидова геометрия истинной, то найдем, что он не имеет смысла. Это было бы все равно, что спрашивать, какая система истинна - метрическая или же система со старинными мерами, или какие координаты вернее - декартовы или же полярные. Никакая геометрия не может быть более истинна, чем другая; та или иная геометрия может быть только более удобной (А. Пуанкаре, О науке, с. 41).

Логически это неопровержимо. Речь может идти лишь о "неконструктивности" такого подхода и его

несоответствию принципу "бритвы Оккама": зачем вводить такой объект, как евклидова прямая, если в физическом мире ему ничего не соответствует? С другой стороны, согласно платонистским взглядам на математику (см. гл. 8), подход Пуанкаре вполне оправдан, так как математические понятия, в том числе и понятия евклидовой геометрии, относятся тогда к некой "высшей" реальности и их статус не может зависеть от свойств физической (или астрономической) Вселенной. В любом случае здесь затрагиваются очень серьезные проблемы, которые вряд ли имеют простые общепризнанные решения.

В философии понятие мирового пространства может обсуждаться в иных аспектах. Здесь, как и в науке, остро ставится проблема конечности или бесконечности мира.

Я вижу эти ужасающие пространства вселенной, которые заключают меня в себе, я чувствую себя привязанным к одному уголку этого обширного мира... Я вижу со всех сторон только бесконечности, которые заключают меня как атом, я как тень, которая продолжается только момент и никогда не возвращается (Б. Паскаль, Мысли).

Казавшиеся когда-то революционными идеи о бесконечном пространстве сейчас представляются слишком простыми (как мы увидим ниже, в том числе и с точки зрения науки).

Существует некое единое общее пространство, единая, необозримая безмерность, которую смело можно назвать Пустотой (Вакуумом); в ней находятся бесчисленные небесные тела, подобные тому, на котором мы живем и произрастаем. Мы утверждаем, что это пространство бесконечно... В нем существуют бесконечные миры, подобные нашему собственному (Дж. Бруно, De l'infinito universi et mondi).

У современного человека такая картина, чреватая дурной бесконечностью, вовсе не вызывает энтузиазма.

Смысл Империи, Публий, в обессмысливании пространства... Когда столько завоевано - все едино... И программы эти космические - то же самое. Ибо чем они кончаются? Когортой на Сириусе, колонией на Канопусе. А потом что? возвращение. Ибо не человек пространство завоевывает, а оно его эксплуатирует. Поскольку оно неизбежно. За угол завернешь - думаешь, другая улица. А она - та же самая: ибо она - в пространстве... Все - метры квадратные. Или, если хочешь, кубические. А помещение есть тупик, Публий... Нужник, Публий, от Персии только размером и отличается. Хуже того, человек сам и есть тупик. Потому что он сам - полметра в диаметре (И. Бродский, Мрамор).

А.Ф. Лосев резко протестует против подхода Джордано Бруно.

Допустим, ... что мир бесконечен и только бесконечен. Если что-нибудь не имеет конца, - след., оно не имеет границы и формы. Если что-нибудь не имеет границы и формы, это значит, что оно ничем не отличается от всего прочего. Но если оно ничем не отличается от всего прочего, то следовательно, невозможно установить, существует ли оно вообще или нет. Итак, если мир бесконечен, то это значит, что ровно никакого мира не существует. Нигилизм Нового времени, так, в сущности, и думает. Восхвалять бесконечность миров заставляло тут именно желание убить всякий мир; и католичество, которое хотело спасти живой и реальный мир, имело полное логическое [разумеется, только!
– В.И., М.К.] право сжечь Дж.Бруно (Диалектика мифа).

М. Мамардашвили сравнивает философию Канта с идеями Дж.Бруно о бесконечном числе миров:

А Кант говорит о другом. Он говорит о метафизической множественности, то есть о множественности миров, возможной в точке. Что не нужно далеко идти. Там, где место души, где человек, в этой точке множество. Почему и как это возможно? Потому что пространства разнородные... Если восприняли, то уже определились пространственно, и это пространство уже не какое-то возможное, а мое. Это мой мир (Кантианские вариации).

Поделиться:
Популярные книги

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Сумеречный Стрелок 10

Карелин Сергей Витальевич
10. Сумеречный стрелок
Фантастика:
рпг
аниме
фэнтези
5.00
рейтинг книги
Сумеречный Стрелок 10

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Заклинание для хамелеона

Пирс Энтони
Шедевры фантастики
Фантастика:
фэнтези
8.53
рейтинг книги
Заклинание для хамелеона

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Хильдегарда. Ведунья севера

Шёпот Светлана Богдановна
3. Хроники ведьм
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Хильдегарда. Ведунья севера

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Развод с генералом драконов

Солт Елена
Фантастика:
фэнтези
5.00
рейтинг книги
Развод с генералом драконов