В поисках «энергетической капсулы»
Шрифт:
Но пока цена такого материала тоже фантастическая, нить из него получить очень трудно – на сегодняшний день волоконца имеют длину всего в несколько микрон. Обнадеживает, однако, тот факт, что лет десять назад и графитовое волокно стоило весьма дорого, а теперь, когда его производство отлажено, из него делают даже лыжные палки. Поэтому можно надеяться, что и сверхпрочные волокна из алмаза скоро станут дешевыми, как уже подешевели, например, искусственно получаемые алмазы. Запасов же углерода, кварца, стекла в мире хоть отбавляй.
Итак, двадцать
Профессор А.В. Степанов из Ленинграда предсказал и рассчитал новые «сверхматериалы», как будто специально созданные для супермаховиков. По его мнению, можно так плотно «упаковать» атомы в кристалле углерода – в алмазе, что полученный «сверхалмаз» выдержит небывалую нагрузку – 400 кН/мм2. Но еще больших результатов следует ожидать от «плотноупакованного»... азота. Этот азот будет уже не газом, а металлом, с плотностью большей, чем у платины, – 25 т/м3. Предполагается, что он должен выдерживать нагрузку 2800 кН/мм2. Маховик из «плотноупакованного» азота достигнет плотности энергии, которую даже трудно вообразить, – 60 мегаджоулей на килограмм.
Иначе говоря, небольшой маховичок из «сверхматериала» – диаметром 30 сантиметров и толщиной 6 сантиметров – сможет обеспечить пробег автомобиля на расстояние 30 тысяч километров без подзарядки!
Это даже не «капсула», а «сверхкапсула», такой, пожалуй, пока и не надо. К тому же сверхматериалов, необходимых для ее создания, еще нет, хотя специалисты утверждают, что они появятся в ближайшем будущем. Во всяком случае, меня очень радовало то, что перспектив у супермаховиков стать настоящей «энергетической капсулой» сколько угодно и я не зря связал свои надежды с этим видом накопителя энергии.
Но пора было, что называется, спуститься с небес на землю и посмотреть, на что я со своей идеей «энергетической капсулы» могу рассчитывать сегодня. И вот к каким выводам я в результате пришел.
Имеющихся в промышленности материалов – стальных лент, проволок, стеклянных и кварцевых волокон, волокон из графита, бора, специального дешевого волокна – кевлара, идущего, кстати, на покрышки для автомобилей, – вполне достаточно для создания супермаховичных накопителей с плотностью энергии большей, чем у электроаккумуляторов. По другим полезным показателям – плотности мощности, КПД, долговечности, стоимости – супермаховики тоже намного превзойдут эти аккумуляторы.
«Заряжать» супермаховики можно с помощью обычного электродвигателя. Если требуется быстрая «зарядка», супермаховик нужно соединить с валом большого стационарного двигателя мощностью в сотни киловатт. Такой двигатель разгонит его за считанные минуты или даже секунды. А если время «зарядки» не регламентировано, то сгодится маломощный зарядный двигатель, который можно возить с собой на автомобиле и при необходимости подключать к электросети посредством шнура с вилкой, как мы включаем, например, пылесос.
То есть и по срокам «зарядки» супермаховики гораздо
Теперь я уже мог со спокойной совестью работать над супермаховиками дальше, не опасаясь, что мои усилия пропадут впустую, а идея «энергетической капсулы» будет расценена как нереальная или преждевременная.
Чтобы выявить слабые и сильные стороны супермаховиков, я решил построить и испытать несколько образцов из ленты и проволоки. Казалось бы, взял ленту или проволоку, намотал на катушку – и готов супермаховик. Но не тут-то было. При создании супермаховиков я столкнулся со многими трудностями – расслоением ленточного витого обода, спаданием обода с центра – барабана, вибрациями при работе, закреплением последнего витка и другими. Какие хитроумные головоломки приходилось тут решать, я хочу показать на следующем примере.
Когда делаешь супермаховик из проволоки, навиваешь ее на катушку, один конец проволоки оказывается внутри, а другой обязательно выходит наружу. Это естественно – ведь им заканчивается намотка. Однако для супермаховика такой конец очень нежелателен – его негде крепить. Если скрутить конец с предыдущим витком, он этот виток размотает или порвет – каждый миллиграмм массы проволоки при вращении создает огромные силы, разрывающие ее. Самое лучшее было бы «подсунуть» наружный конец под первые витки, но как это сделать? Сначала такое казалось мне невозможным. И все-таки выход нашелся.
Я закрепил оба конца проволоки на катушке, состоящей из двух отдельных половинок на одном валу, и начал крутить эти половинки в разные стороны. Проволока стала навиваться на них как обычно, с той лишь разницей, что когда процесс намотки подошел к концу, оба свободных конца проволоки остались внутри, а последний внешний виток пришелся как раз посередине обмотки. Потом я пропитал обмотку супермаховика клеем и высушил.
Этот способ изготовления супермаховиков и другие найденные мною способы, а также ряд предложений по конструкциям супермаховиков были отмечены авторскими свидетельствами. Изобретения мои оказались более ранними, чем похожие на них зарубежные, авторы которых сделали их совершенно самостоятельно, ничего не зная о моих находках. Просто диву даешься, как одинаково могут думать люди в разных концах света!
Как отобрать энергию?
Шло время, в каждом килограмме моего самодельного супермаховика уже накапливалось больше энергии, чем в других аккумуляторах. И вот однажды я задумался: несомненно, что в будущем в супермаховиках удастся накапливать столько энергии, сколько ее, например, в летящем с космической скоростью метеорите, однако сможем ли мы «отбирать» эту энергию? Какие трудности здесь встретятся?
Первая же мысль была о подшипниках. Выдержат ли они столь высокие скорости вращения супермаховика? Существуют ли вообще подшипники, способные работать при таких скоростях?