В просторы космоса, в глубины атома [Пособие для учащихся]
Шрифт:
А вот и вторая.
Совершенно недвусмысленное, казалось бы, выражение «…изготовить электронный прибор…» с некоторого времени приобрело два совершенно разных значения. Еще недавно оно означало, что изготавливаются какие-то детали, скажем, детали электронной лампы — металлические цилиндры, спирали, сетки, трубки, стеклянный баллон, цоколь, и затем эти детали собирают, соединяют, превращают в единое целое. Но вот лет тридцать назад физика твердого тела, академическая в общем-то наука, на основе глубокого исследования физических процессов в полупроводниках предложила практике новый вид усилительного электронного прибора — транзистор, аналог трехэлектродной усилительной лампы.
Справедливость требует, чтобы,
С точки зрения конструктора, основа транзистора — это только одна деталь — полупроводниковый кристалл. И лишь технолог знает, что в этом одном кристалле фактически есть три разные части: эмиттер, база и коллектор, или в так называемых полевых транзисторах — исток, затвор и сток. Части эти могут создаваться разными способами, которые, однако, дают один и тот же результат — в полупроводниковый кристалл вводятся примеси, и в нем появляются отдельные участки с различными электрическими свойствами. Например, появляются зоны с разной концентрацией свободных электрических зарядов — отрицательных (это зона n от слова negativus — отрицательный) и положительных (это зона р от слова positivus — положительный). Эти зоны фактически представляют собой детали полупроводникового прибора, детали, созданные в целом, в одном кристалле, без его разрушения, без разделения на части. Вот так выражение «изготовить электронный прибор» получило новое значение.
Виртуозная технология, которой постепенно вооружалась электронная промышленность, сегодня позволяет формировать в кристалле почти все виды элементов электронных схем — диоды, транзисторы, проводники, конденсаторы (две примыкающие друг к другу зоны n и р, если подать на них определенное напряжение, становятся обкладками конденсатора), резисторы (точно дозируя количество примесей и размеры той области, куда они вводятся, можно создавать резисторы с самым разным сопротивлением). Это и есть та вторая реальность, на основе которой выросла интегральная электроника.
Теперь о тех причинах, которые заставили переходить к интегральным схемам, вдохновили науку и промышленность на решение этой чрезвычайно сложной задачи. Причин немало, но большинство из них связано с тем, что в радиоэлектронике часто называют «тиранией количеств». В двадцатые годы, когда детекторный приемник считался шедевром радиотехники, наиболее сложные электронные схемы состояли из десятков, максимум сотен элементов. Но постепенно радиоэлектронная аппаратура усложнялась и число элементов в одном аппарате резко увеличивалось— в среднем в 10 раз каждые 10 лет. Особенно быстро стало расти число элементов с появлением вычислительных машин, и сегодня схемы больших ЭВМ содержат многие миллионы элементов.
Увеличение числа элементов, если они представлены в электронном приборе отдельными деталями, влечет за собой немало трагических последствий. Из-за ненадежности межэлементных соединений резко падает надежность всего прибора. Растет масса, оказывается, например, что грузоподъемности самолета просто может не хватить, чтобы поднять все необходимое ему современное электронное оборудование,
Преодолеть это препятствие или по крайней мере заметно его отодвинуть позволили интегральные схемы.
Интегральная схема, как говорит само название, — это нечто обобщенное, просуммированное. А конкретно — это многоэлементный электронный блок, выполненный в виде единого целого. В частности, в виде полупроводникового кристалла, где последовательными технологическими операциями созданы и соединены друг с другом различные элементы схемы.
На рисунке 3 цветной вклейки очень упрощенно показана часть такой схемы. В нее входят транзистор Т2, два резистора R1 и R2, конденсатор С и несколько соединительных линий.
Некоторые этапы изготовления интегральной схемы иллюстрируются упрощенным рисунком 4, 1—15. После разработки самой электрической схемы (рис. 4, 1) следует создание топологии (рис. 4, 2), т. е. определение всех конфигураций и взаимного расположения тех зон кристалла, из которых будут образованы детали интегральной схемы, а также конфигурации соединительных цепей. Работа эта весьма сложна, и ведется она с помощью ЭВМ. Без ЭВМ не обходится и следующий этап — создание фотошаблонов (рис. 4, 3), с помощью которых разработанная топология воплощается в кристалле методами фотолитографии. Фотошаблон создается сразу на большое число одинаковых интегральных схем (рис. 4, 4), т. е. его делают многоэлементным. А затем на одном кристалле с помощью таких многоэлементных фотошаблонов создается большое число одинаковых «рисунков» — одинаковых интегральных схем. В заключение кристалл разрезают (рис. 4, 15) и каждую отдельную интегральную схему тщательно проверяют.
Образование отдельных деталей интегральной схемы в общих чертах осуществляется так. На кристалл наносят светочувствительный слой, так называемый фоторезист (рис. 4, 5), затем его засвечивают через фотошаблон (рис. 4, 6), проявляют, удаляют засвеченные участки (рис. 4, 7) и в образовавшиеся окна либо вводят примеси (рис. 4, 9), либо убирают в глубине этих окон какой-нибудь ненужный слой и в нем тоже вскрывают окна (рис. 4, 8), либо, наконец, убирают участки алюминиевого покрытия, формируя таким образом соединительные цепи сложной конфигурации (рис. 4, 11, 12).
Вот и опять слишком короткое описание создает, по-видимому, иллюзию этакой простоты или, может быть, даже примитивности технологического процесса. Но это, конечно, не более чем иллюзия. В подтверждение — несколько цифр и фактов.
Если в первых интегральных схемах в одном кристалле создавали всего несколько элементов, то теперь степень интеграции резко возросла, создаются схемы, которые содержат тысячи и десятки тысяч элементов. Это и есть БИСы — большие интегральные схемы: в них на 1 мм2 поверхности (это поверхность булавочной головки) может приходиться более тысячи элементов. Размеры отдельного элемента при этом измеряются тысячными долями миллиметра, их, естественно, можно было бы увидеть только в хороший микроскоп.