Вам, земляне(Издание второе, переработанное)
Шрифт:
Современная наука с интересом исследует метеоры, так как движение их следов позволяет изучать воздушные движения в стратосфере, а спектры метеоров — состав и плотность воздуха на больших высотах. Все эти данные весьма ценны для теории полетов в верхних слоях земной атмосферы.
Некоторые метеорные тела приходят к нам из пояса астероидов, другие образуются при распаде комет. Так, в 1846 г. комета, открытая чешским астрономом Биелой, разделилась на две части, движущиеся в пространстве по параллельным орбитам. В одно из следующих возвращений кометы Биелы к Солнцу, в ноябре 1872 г. вместо нее на небе наблюдалось множество метеоров — настоящий «звездный дождь». Очевидно, рой мельчайших метеорных тел, породивших это красивое небесное явление, образовали частицы распавшегося кометного
Астрономам известно множество метеорных потоков. Так очи называют скопления метеорных тел, обращающихся вокруг Солнца по сильно вытянутым эллиптическим орбитам. Вычислено, что орбиты многих метеорных потоков сходны с орбитами известных комет. Следовательно, распадаясь, кометы оставляют за собой «шлейф» из частиц, которые располагаются вдоль всей ее орбиты. После окончательного распада кометы вещество ее ядра постепенно распределяется вдоль орбиты, образуя нечто вроде исполинского «бублика». Постепенно и он распадается на бесчисленное количество отдельных «спорадических» метеорных тел, самостоятельно странствующих по Солнечной системе.
Межпланетное пространство заполнено великим множеством мельчайших твердых пылинок, образующих так называемое Зодиакальное Облако. Это продукты дробления крупных тел Солнечной системы. Если поперечник пылинки меньше 10– 5 см, она «выдувается» давлением солнечных лучей в межзвездное пространство. При больших размерах ее полет тормозится солнечными лучами, и, двигаясь по скручивающейся спирали, она в конце концов падает на Солнце. Кроме этой пылевой «завесы», Солнечная система имеет тончайшую «вуаль» из разреженных межпланетных газов.
В настоящее время все в Солнечной системе постепенно разрушается. Непрерывно теряет вещество и энергию Солнце. Медленно улетучиваются атмосферы планет. Астероиды дробятся при взаимных столкновениях, а метеориты частично разрушают планеты и спутники, врезаясь в их поверхности. В этой картине естественных космических процессов нет ничего созидающего.
Но так не могло быть всегда. Ведь когда-то Солнечная система, включая нашу планету, начала свое существование. Это событие скрыто в глубине времен, и мы знаем о нем очень мало. Во всяком случае, окончательно проблема происхождения Земли пока не решена.
«Холодный» вариант земной биографии
Известный немецкий философ Иммануил Кант (XVIII век) считается создателем первой научной гипотезы о происхождении Солнечной системы. По мнению И. Канта, Солнечная система возникла из огромного облака мелких твердых холодных частиц, взаимно притягивающих друг друга. В этом хаотическом облаке, как считал Кант, должны были рано или поздно образоваться отдельные сгущения, постепенно уплотняющиеся за счет падающих на них новых частиц. Самое большое из сгущений стало Солнцем, а меньшие — планетами.
Гипотеза Канта с современной точки зрения выглядит весьма наивной. Она не могла объяснить различные особенности Солнечной системы, поэтому не получила широкого распространения, хотя ее основная идея — конденсация планет из холодного распыленного вещества — используется и в современной космогонии — разделе естествознания, изучающем происхождение и развитие космических тел.
Гипотезу Канта сменила выдвинутая известным французским ученым Лапласом (XVIII век) гораздо более обоснованная гипотеза. Лаплас предполагал, что Солнце и планеты образовались из огромной раскаленной вращающейся газовой туманности. Под влиянием холода окружающего ее мирового пространства туманность сжималась, при сжатии угловая скорость ее вращения увеличивалась, а сама туманность постепенно сплющивалась. Благодаря большой скорости вращения туманности от нее вдоль ее экватора одно за другим начали отделяться газовые кольца, которые затем сгустились в планеты. Что же касается центрального сгустка туманности, то он постепенно превратился в Солнце. Гипотеза Лапласа просуществовала около полутора веков. Как и гипотеза Канта, она сыграла большую положительную роль в естествознании, так как на ее примере была доказана возможность объяснять происхождение небесных тел без помощи сверхъестественных сил.
В начале XX
После крушения гипотезы Лапласа некоторые зарубежные ученые пытались выдвинуть разнообразные гипотезы о происхождении Земли и планет. Однако все эти гипотезы очень быстро вступали в противоречие с фактами и отвергались как несостоятельные. Лишь с 1943 г. советские ученые начали вносить некоторую ясность в этот очень сложный вопрос. Трудность космогонических проблем обусловлена колоссальной продолжительностью жизни небесных тел, т. е. их пребыванием в характерном для них состоянии. Так, возраст Земли близок к 5 млрд. лет.
Исследование ископаемых растений показало, что излучение Солнца за сотни миллионов лет практически не изменилось. Это значит, что возраст Солнца намного превышает возраст Земли. Так как Солнце еще весьма далеко от погасания и его самосвечение будет продолжаться еще по крайней мере миллиарды лет, продолжительность жизни Солнца и многих звезд должна измеряться многими миллиардами лет.
По сравнению со всеми этими сроками продолжительность жизни не только отдельного человека, но и всего человечества в целом кажется мигом. Телескоп был изобретен всего лишь три с половиной века назад, а ведь только с помощью телескопа стало возможным изучение физической природы небесных тел. Эволюционные изменения небесных тел, несомненно, происходят, но во многих случаях так медленно, что непосредственно заметить их мы не в состоянии. В этом основная трудность космогонических проблем. Есть, однако, и другие затруднения. В частности, планетная система известна нам лишь в единственном экземпляре. Планетные системы других звезд пока недоступны непосредственному наблюдению. Следовательно, сравнить между собой несколько планетных систем, находящихся на разных стадиях развития, и сделать вывод о их происхождении современная космогония не может.
Несмотря на все эти трудности, научная космогония прогрессивно развивается. Как и всякая наука, она идет от гипотезы к гипотезе, сохраняя все ценное от каждой из них. Характерно, что космогонические гипотезы постепенно усложняются и стремятся объяснить возможно больше наблюдаемых фактов. Нет сомнения, что со временем будут созданы строго и всесторонне обоснованные научные теории, подобные, например, теории эволюции органического мира на Земле.
Начиная с 1943 г. группа советских ученых во главе с акад. О. Ю. Шмидтом разработала стройную космогоническую гипотезу, основанную на новейших достижениях современного естествознания (рис. 29).
Рис. 29. Схема образования планет по гипотезе О. Ю. Шмидта.
По гипотезе Шмидта, наше Солнце много миллиардов лет назад было окружено исполинским «протопланетным» облаком, состоящим из холодной пыли и частичек замерзших газов. Составляющие облако частицы вещества обращались вокруг Солнца. Их было много, они часто сталкивались, и при столкновении часть их энергии безвозвратно излучалась в форме тепла. В конце концов, теряя энергию и испытывая взаимное тяготение, частицы, падая друг на друга, как бы «слипались», образуя постепенно растущие сгущения — зародыши будущих планет. При этом «протопланетное» облако постепенно сплющивалось, а конденсирующиеся «протопланеты» приобретали все более и более круговые орбиты. Последний процесс был вызван тем, что при «слипании» частиц «протопланетного» облака элементы их орбит (величины, характеризующие форму, размеры орбит и их положение в пространстве) осреднялись, поэтому чем крупнее получалась планета, тем больше ее орбита походила на окружность. Прошло очень много времени, прежде чем «протопланетное» облако «сгустилось» в современные планеты.