Чтение онлайн

на главную - закладки

Жанры

Вечное движение. История одной навязчивой идеи
Шрифт:

В конце прошлого столетия физики Больцман{6} и Планк{7} заложили научные основы этого вопроса. Больцман, в частности, показал, что самопроизвольное выравнивание температур двух тел есть результат перехода молекул этих тел из менее вероятного в более вероятное состояние. Гипотетическая передача тепла в направлении от менее нагретого тела к более нагретому в свете этого доказательства возможна, но маловероятна.

Это положение можно проиллюстрировать простым примером. Закон диффузии газов очень близок к закону теплопереноса, поскольку в процессе диффузии молекулы газов стремятся распределиться равномерно. Если на газ не воздействовать извне, то будет наблюдаться тенденция

к выравниванию его плотности. Было бы по меньшей мере странно, если бы газ, первоначально обладавший равномерной плотностью, вдруг стал бы скапливаться в одной части сосуда, оставляя при этом незаполненное пространство в другой его части. Аналогичное весьма маловероятное явление происходило бы с теплом, переходящим от менее нагретого к более нагретому телу.

Давайте теперь предположим, что существует крохотный сосуд, вмещающий всего две молекулы, по одной в каждой половине сосуда. Молекулы эти находятся в непрерывном движении, ударяясь о стенки и беспорядочно проскакивая вперед и назад из одной части сосуда в другую. При этом, очевидно, существуют четыре возможных варианта расположения молекул в пространстве:

А — В, В — А, АВ <- 0, 0 -> АВ.

В двух вариантах из четырех в одной половине сосуда возникает вакуум. Следовательно, вероятность такого события равна 1/2, и можно ожидать, что половину времени одна часть сосуда будет пустой. С увеличением числа молекул вероятность появления вакуума резко падает. При общем числе молекул, равном n, вероятность того, что половина сосуда окажется пустой, составит (1/2)n-1. Практически число молекул огромно, поэтому вероятность такого события близка к нулю. Так, для реального случая, когда разница давлений в двух половинках одного кубического сантиметра газа не превышает одного процента, вероятность возникновения вакуума в какой-нибудь половине этого кубика ничтожно мала; такое событие может произойти один раз за (1010)18 лет!

И хотя эти рассуждения выглядят вполне впечатляющими, одно обстоятельство все же необходимо пояснить. Не следует думать, что если возникновение вакуума—событие настолько редкое, то нам действительно придется ждать его появления многие миллионы лет. Вакуум может создаться и через минуту! Более того, вакуум может возникнуть дважды в течение минуты, но на очень короткое время.

Доктор Хейл из бюро стандартов США предположил, что подобная система доказательств могла бы привести нас к аналогичному заключению о возможности самопроизвольного появления заметной разницы температур в некоем объеме газа. Известно, что температура газа определяется скоростью движения его молекул. При температуре, которая считается постоянной, скорости отдельных молекул газа далеко не одинаковы. Однако все они статистически распределены около той средней величины, которая всегда остается неизменной.

Давайте вновь рассмотрим микроскопический сосуд, в котором находится всего четыре молекулы. Пусть на этот раз две молекулы F1 и F2 быстрые, а две другие молекулы S1 и S2 медленные.

Допуская, что изменений в плотности газа нет, мы получим шесть различных вариантов расположения молекул в сосуде:

Первые четыре варианта—это случаи, когда в обеих половинах сосуда температура газа одинакова, поскольку современные измерительные приборы дают ее усредненное значение. В двух последних вариантах наблюдается разница температур; вероятность их возникновения для четырех молекул равна 1/3.

С увеличением числа молекул вероятность появления сколько-нибудь заметной разницы температур в двух частях

нашего гипотетического сосуда резко уменьшается. Следует также иметь в виду, что в любом объеме газа, температуру которого мы в состоянии измерить или проконтролировать, температура каждой отдельной весьма малой его части постоянно колеблется относительно градуировочной кривой прибора, и в целом газ столь же неоднороден по температуре, как и поверхность океана не является абсолютно ровной.

Итак, вероятность появления заметной разницы температур в газе очень мала. Но все же она существует, и, значит, следует не только признать возможность перехода тепла от менее нагретого тела к более нагретому, но и согласиться с тем, что такой переход непрерывно осуществляется, правда, в столь незначительных масштабах, что мы вряд ли сможем его наблюдать. Поэтому, как утверждал немецкий философ Карл Христиан Планк (1819—1880){8}, существует вероятность, хотя и очень незначительная, что в чайнике, помещенном над огнем, замерзнет вода.

Признание учеными возможности, во-первых, перехода тепла от менее нагретого тела к более нагретому и, во-вторых, возникновения при этом незначительного, но все же заметного изменения температуры и плотности послужило основанием для дальнейших рассуждений. Возник вопрос о том, нельзя ли создать устройство, в котором в результате подобных изменений постепенно увеличивался бы перепад температур, за счет которого можно было бы в дальнейшем совершать полезную работу? Вопрос этот возник лет восемьдесят назад, а само это гипотетическое устройство вошло в науку под названием вечного двигателя второго рода. Такое название оно получило потому, что должно было совершать работу, не вырабатывая энергии и вопреки второму началу термодинамики.

Проект устройства был сперва предложен парижанином Липпманом в 1900 году, а затем в 1907 году Сведбергом из города Упсала (Швеция). В 1912 году Смолуховский{9} опубликовал развернутое теоретическое обсуждение данной проблемы. Он показал, что вряд ли стоит надеяться, будто с помощью устройства, содержащего молекулы газа, удастся накапливать эти столь редкие «отступления» от второго начала, поскольку любое подобное устройство само по себе будет подвержено изменениям на молекулярном уровне. Постоянно происходящее перераспределение скоростей движения молекул уничтожит все перепады температуры, которые предполагалось накапливать в устройстве и которые принципиально необходимы для его работы.

Это доказательство представляется весьма убедительным, хотя и обескураживающим. Замечателен вывод, вытекающий из него: второе начало термодинамики для больших промежутков времени справедливо лишь в статистическом смысле.

Интересно, что спустя тринадцать лет, в марте 1925 года, выступая перед сотрудниками американского бюро стандартов, профессор Дебай{10} заявил: для согласования явления интерференции света с квантовой теорией необходимо допустить, что закон сохранения энергии верен только в статистическом смысле. По его мнению, в очень короткие промежутки времени энергия может создаваться, а на протяжении длительного времени ее среднее значение будет оставаться неизменным. В предположении Дебая содержится скрытый намек на то, что вечное движение первого рода, то есть истинное создание энергии, представляет собой некую «научную вероятность» и даже «возможность».

Поиски вечного движения можно отнести к числу тех научных заблуждений, которые пришли на смену опытам алхимиков и построениям квадратуристов{11}. Однако столетия, в течение которых умы ученых мужей были заняты подобными тщетными исканиями, обогатили науку знаниями, куда более ценными, чем цели, преследуемые этими фанатиками. Вот что писал по этому поводу в своей «Теории теплоты» Престон: «Алхимики сделали для химии как науки то же, что изобретатели вечных двигателей для натурфилософии. Их поиски неизбежно привели к открытиям величайшей теоретической и практической важности».

Поделиться:
Популярные книги

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Мастер темных Арканов 5

Карелин Сергей Витальевич
5. Мастер темных арканов
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер темных Арканов 5

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Семь Нагибов на версту

Машуков Тимур
1. Семь, загибов на версту
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Семь Нагибов на версту