Чтение онлайн

на главную - закладки

Жанры

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Шрифт:

Опасения Гофмана связаны с тем, что на международных соревнованиях 1909 г. в Реймсе немецкие самолеты оказались намного хуже американских и французских. Выход он видит в том, чтобы опередить будущих противников в применении ppm-2. Однако призыв Гофмана к военному использованию ppm-2 остался нереализованным.

Идеи о низкотемпературных термомеханических ppm-2 возникали еще не раз в самых различных модификациях. После Гэмджи и Триплера их разрабатывали Липпман (1900 г.), Сведберг (1907 г.) и многие другие. Выдвигаются подобные проекты и теперь.

В качестве примера можно привести машину Г. Джерсена, на которую был выдан патент США с приоритетом от 3.12.1981 г. [3.13].

Описание и иллюстрации в патенте сделаны очень путано (по-видимому, это интернациональная особенность всех изобретателей ppm-2) и с ошибками. Естественно также, что предлагаемое устройство не называется прямо вечным

двигателем, а носит вполне благопристойное название «тепловая машина». Однако после расшифровки становится очевидным, что это типичный ppm-2, но несколько усовершенствованный.

Принципиальная схема машины Джерсена приведена на рис. 5.4. Она включает два контура, объединенных общим компрессором I. Первый из них, показанный сплошной линией, представляет собой классический тепловой насос. Давление циркулирующего в нем рабочего тела при сжатии в компрессоре повышается с р 1до р 2; одновременно возрастает и его температура. Горячее рабочее тело (аммиак или фреон [72] в состоянии, соответствующем точке 2, поступает сначала в теплообменник V, где отдает теплоту Q 3, и затем дополнительно охлаждается в конденсаторе II. При этом от него отводится теплота Q 2. Жидкий хладагент дросселируется в вентиле III, в результате его давление снижается с p 2до р 1. При этом часть жидкости испаряется и ее температура падает. Холодная жидкость выкипает в испарителе IV при подводе извне теплоты Q 1.

72

Фреонами (хладонами) называют группу веществ — галоидопроизводных предельных углеводородов, которые используются как рабочие тела холодильных и теплонасосных установок.

Рис. 5.4. Принципиальная схема тепловой машины Г. Джерсена: I — компрессор; II — конденсатор; III — дроссельный вентиль; IV— испаритель; V— теплообменник: VI — турбина; VII — пусковой компрессор

Таким образом, действие машины приводит к отбору теплоты Q 1на низком температурном уровне от какого-либо теплоотдачика и выдаче теплоты Q 2на более высоком уровне. Изобретатель указывает, что можно использовать предлагаемое им устройство и как холодильную машину, и как тепловой насос. В первом случае теплота Q 1отбирается при низкой температуре Т 1< T О.С., а количество теплоты Q 2отдается при высокой температуре (от T 3до T 4) близко к T О.С.. Во втором случае теплота Q 1отбирается у окружающей среды при T О.С., a Q 2отводится при высокой температуре T 3> T О.С.. Здесь все пока правильно. Такие установки существуют и благополучно работают в качестве как холодильных, так и теплонасосных. Но, естественно, при одном условии: компрессор нужно приводить в движение посредством работы, подводимой извне. Но как обойтись без этого? Чтобы избежать получения работы извне (тогда не было бы никакого изобретения), Джерсен идет «классическим» путем, характерным для всех изобретателей ppm-2: он пытается обойтись «внутренними ресурсами». Тепловой насос сам должен обеспечить себя энергией для привода компрессора. Для этого и создается второй контур, обозначенный на рисунке штриховыми линиями. Он, собственно, состоит из одной турбины-двигателя VI, действие которой обеспечивается частью сжатого рабочего тела, отбираемого в точке 2 после компрессора. Расширяясь в турбине от давления р 2до давления р 1, оно производит определенную работу и возвращается после подогрева в теплообменнике V во всасывающую линию компрессора. По мысли изобретателя этой работы должно хватить и на то, чтобы вращать компрессор (работа L’), и на внешнего потребителя (работа L). Автор не забыл и о запуске установки, который делается от специального

внешнего привода (на схеме он не показан) и компрессора VII. Все предусмотрено!

Если бы это «все» могло быть в действительности, то человечество получило бы двигатель, работающий только за счет теплоты, отводимой от окружающей среды. Мало того, этот двигатель дополнительно давал бы либо холод (если бы первый контур работал как холодильная машина), либо теплоту (если бы он действовал как тепловой насос). Но, увы, второй закон запрещает оба варианта. И в первом и во втором случае простой расчет показывает, что работы турбины не хватит даже на привод компрессора, не говоря уже о внешнем потребителе.

Энергетический баланс здесь, как и в любом приличном ppm-2, сходится, и нарушения первого закона нет.

Действительно, для этого необходимо только, чтобы Q 2= Q 1— L. Величины L' и Q 3в баланс не входят, так как они характеризуют внутреннюю передачу энергии от одной части установки к другой. Видно, что ничего невозможного (с точки зрения первого закона) в этом уравнении нет: сколько энергии с тепловым потоком поступает, столько с работой и теплотой отводится.

Эксергетический баланс двигателя Джерсена будет выглядеть по-разному в зависимости от режима.

Для режима теплового насоса

0 = E q+ L.

Эксергия теплоты Q 1, взятой от окружающей среды, равна нулю, и из него (нуля) получается у Джерсена и эксергия теплоты Q 2, даваемой тепловым насосом (E q= Q 2•(T Г— T О.С.)/T Г)), и еще внешняя работа. Явно невозможная ситуация — эксергия теплоты и работа из ничего: КПД eбыл бы равен бесконечности:

Для режима холодильной установки тоже 0 = E q+ L. Здесь опять же эксергия ниоткуда не поступает, но расходуется по двум направлениям. Во-первых, она отдается в виде «холода» (E q= Q•(T Х– T О.С.)/T Х), так как приход теплоты при Т > T О.С.соответствует расходу эксергии (Q 1и E qимеют разные знаки, поскольку E q= (T Х– T О.С.)/T Х< 0). Во-вторых, эксергия отводится в виде работы L. Опять два полезных результата «из ничего» и бесконечно большой КПД!

Наряду с «холодными» ppm-2 разрабатывались и «теплые», предназначенные для работы только при температурах выше температуры окружающей среды. Источник энергии у них оставался тот же — «теплота окружающей среды». Их авторы опирались уже на традиции теплотехники. Некоторые из них тоже защищены авторскими свидетельствами или патентами [3.14]—[3.17].

Разберем один из них, наиболее характерный [3.14]. Автор (проф. А.Н. Шелест) назвал предложенный им двигатель «машиной будущего». Другое ее название — «машина атмосферного тепла» [3.17].

Схема машины показана на рис. 5.5. Она состоит из двух контуров. Первый, включающий в себя турбокомпрессор 1 и турбину 2, соединен на входе и выходе с атмосферой и запускается в работу пусковым электродвигателем, который на схеме не показан. Засасываемый в компрессор атмосферный воздух (при p О.С.и T О.С.) сжимается; температура его соответственно возрастает. В теплообменнике 3 горячий сжатый воздух охлаждается (в пределе — до исходной температуры), нагревая рабочее тело второго контура. После этого холодный сжатый воздух поступает в турбину 2, расширяется с отдачей внешней работы и выбрасывается в атмосферу. Поскольку температура перед турбиной близка к T О.С., температура отработанного расширенного воздуха Т за турбиной будет ниже температуры окружающей среды T О.С.. Развиваемая турбиной 2 мощность используется для привода компрессора 7, что позволяет уменьшить необходимую для работы компрессора мощность пускового электродвигателя. Таким образом, первый контур играет, по мнению А.И. Шелеста, роль теплового насоса, «перекачивая» теплоту из атмосферного воздуха на повышенный уровень температур T Г, используемый в теплообменнике 3.

Поделиться:
Популярные книги

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Пленники Раздора

Казакова Екатерина
3. Ходящие в ночи
Фантастика:
фэнтези
9.44
рейтинг книги
Пленники Раздора

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Законы Рода. Том 9

Flow Ascold
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Пипец Котенку! 4

Майерс Александр
4. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку! 4

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Ты - наша

Зайцева Мария
1. Наша
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Ты - наша