Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Шрифт:
Многие сторонники «инверсии энергии» очень любят и рекламируют эту игрушку. Действительно, чем не прообраз ppm-2? Она действует, «извлекая тепло из окружающей среды», и «концентрирует» его, превращая в работу. Часто и объяснения, приводимые в популярной литературе, даже посвященной вечному двигателю, вносят путаницу, например, фразы такого типа: «Постоянные качания утки происходят только благодаря тому, что она отбирает тепло от окружающего воздуха». Дело, конечно, не только (и не столько) в этом. Никакое устройство, в том числе и утка (даже принадлежащая самому Хоттабычу), не могло бы «отбирать тепло» от окружающего воздуха без затраты на это какой-либо эксергии, получаемой извне. Для этого нужно располагать разностью потенциаловмежду окружающей средой и находящимся в ней каким-либо телом. Но
87
В труде проф. М.А.Мамонтова [3.18], который мы уже разбирали в этой главе, есть несколько слов и об «утке Хоттабыча». Вот что в ней написано: «Факт регулярного действия системы Хоттабыча при отсутствии каких-либо других источников энергии, кроме тепла атмосферы, означает, что структура Хоттабыча обладает по сравнению с ординарной закрытой структурой особым свойством, позволяющим получать работу за счет природного тепла». Комментарии здесь, по-видимому, не нужны.
Таким образом, «утка Хоттабыча» живет и движется в полном соответствии со вторым законом. В этом отношении она не отличается от обычной живой утки.
Теперь мы можем перейти к другой группе устройств, которые хоть и не доведены до уровня действующих вечных двигателей, но могут, по мнению некоторых сторонников «энергоинверсии», стать основой для их проектирования. Такие устройства создаютразность температур; очевидно, что, имея ее в своем распоряжении, сделать двигатель уже нетрудно — это дело техники. Именно поэтому мечта о том, чтобы создать без затраты работы разность температур, — один из вариантов мечты о ppm-2.
Знаменитый английский физик К. Максвелл придумал в 1879 г. для таких мечтателей специальную мистическую фигуру — так называемого «демона Максвелла». Этот демон должен был делать очень нехитрую, на первый взгляд, работу — разделять в газе молекулы с большими скоростями («горячие») и с малыми («холодные»), Известно, что в любом газе есть и те, и другие; общая температура газа определяется неким средним значением всех скоростей.
Демон должен находиться у перегородки, разделяющей сосуд с газом на две части, и сторожить небольшое отверстие в ней, открывая и закрывая его так, чтобы пропускать в одну сторону только «горячие» молекулы, а в другую — только «холодные». Для других проход закрыт. Тогда через некоторое время работа демона-вратаря приведет к тому, что в одной половине сосуда будет горячий газ, а в другой — холодный. Цель достигнута! В гл. 3 мы показали на основе статистики, что самопроизвольно такое разделение произойти не может. А здесь «демон», не затрачивая работу, получил разделение.
Демон Максвелла вызвал много споров. Всем серьезным термодинамикам было ясно, что такого демона быть не может; его «деятельность» явно нарушала бы второй закон термодинамики. Но строго научно прикончить этого демона оказалось не так просто. В конце концов это было сделано [88] . Оказалось, что «просто так» демон работать не может. Затраты на его деятельность не могут быть меньше той работы, которую способны дать обе порции газа при выравнивании разности температур между ними.
88
Читателям, которые заинтересуются «демоном Максвелла», можно, рекомендовать познакомиться с ним по литературе, например [1.22].
Однако мечта сделать что-то в этом роде у некоторых противников второго закона оставалась. И вот появилось устройство, которое оживило их надежды. Это была вихревая трубаили труба Ранка (названная в честь ее изобретателя — французского инженера Ж. Ранка).
Вот что пишет об этом устройстве один из пропагандистов «энергоинверсии» [3.10]: «Если способ отделения горячих компонентов воздуха от холодных (быстрых молекул от медленных) с помощью максвелловских демонов, открывающих в перегородке сосуда дверцы перед быстрыми молекулами, видимо, невозможен, то вот с помощью вихревой турбины… это осуществить удалось. Она представляет собой мундштукоподобное устройство, закручивающее в вихрь прокачиваемый сквозь него обычный воздух так, что наружу выходят из него две струи — горячая и холодная. Перед этой простой, не имеющей движущихся частей турбиной большое будущее».
Если заменить в этой тираде несуществующую «вихревую турбину»,
Разберемся, в чем тут дело. На рис. 5.15 показаны схема работы вихревой трубы и ее внутреннее устройство.
Поток сжатого газа (например, воздуха) подводится к сопловому вводу, расположенному касательно к стенке трубы. В трубе газ закручивается в спирально движущийся поток. Внешняя часть 3 этого потока, выпускаемая через кольцевую щель, оказывается нагретой, а внутренняя часть 2, выходящая через отверстие в диафрагме, — охлажденной. Меняя положение конуса 5, можно изменять расходы и температуры горячего и холодного потоков. Однако во всех случаях температура потока Т 2меньше, чем входящего Т 1, а горячего Т 1— больше. Разности температур Т 1— Т 2= Т Xи Т 3— Т 1= Т Гмогут составлять десятки градусов. Это парадоксальное, но вполне объяснимое явление возникает в результате сложных газодинамических явлений, которые мы здесь разбирать не можем [89] . Для нас важен конечный результат — возникновение в трубе разности температур без какого-либо специального нагрева или охлаждения. Можно ли использовать эту разность, чтобы получить работу? Несомненно, да. Работу можно получить. Но нужно ли ее получать таким способом? Имеет ли такое преобразование смысл?
89
Они рассмотрены в соответствующей литературе, например в [1.20].
Увы, нет. В этом легко убедиться, посмотрев на схему включения вихревой трубы на рис. 5.16. Ведь для того, чтобы она действовала, нужно подать в нее сжатый газ, а чтобы сжать его, нужен компрессор, а чтобы компрессор работал, нужно подвести к нему работу L' от двигателя. Так вот, если сравнить эту затраченную работу L' с эксергией, работоспособностью горячего Е 3и холодного Е 2потоков газа, та она будет значительно больше: L' >> Е 2+ Е 3. Разность L' — (E 2+ Е 3) даст потерю D эксергии в этом процессе. Оказывается, что она в самом лучшем случае составляет 88-90% подведенной работы. Другими словами, КПД всей системы составит не более 12%.
Ясно, что никакой «инверсии энергии» здесь нет; напротив, как и во всяком реальном техническом устройстве, эксергия теряется (а энтропия растет). Можно, конечно, и здесь получать электроэнергию L'', но при этом неизбежно получится тот же плачевный результат, что и с другими «концентраторами энергии», например тепловым насосом: L'' по отношению к L' составит 10-12%. Кстати, автор и той, и другой идеи — одно и то же лицо.
Интересно отметить, что мысль о том, что вихревая труба — жилище демона Максвелла и что ее действие нарушает второй закон, приходила в голову многим. Характерна в этом отношении статья М. Силвермэна, помещенная в 1982 г. в журнале Европейского физического общества под интригующим названием «Вихревая труба: нарушение второго закона?» [2.15]. Подробно разобрав вопрос на пяти страницах, автор с грустью все же приходит к выводу, что второй закон термодинамики в вихревой трубе не нарушается.
Другой, не менее любопытный вариант «самопроизвольного» получения разности температур привел известный советский кристаллограф академик (тогда еще профессор) А.В. Шубников в статье «Парадоксы физики» [2.16]. Автор ставит вопрос: можно ли нагреть стоградусным паром жидкость выше 100°? Дальше он пишет: «Этот вопрос был предложен 25 лет назад профессором физической химии Крапивиным выпускникам Московского университета, к которым принадлежал и автор настоящей заметки. С тех пор мне много раз приходилось задавать этот вопрос рядовым физикам и химикам и не было случая, когда я получил бы правильный ответ. Один из видных химиков так обиделся на мой вопрос, что не пожелал даже продолжать разговор на эту тему, объявив, что сама постановка вопроса может свидетельствовать только о моем глубочайшем невежестве в физике; надо думать, что он причислил меня к сумасшедшим изобретателям перпетуум мобиле. Дело кончилось тем, что мне пришлось обманом завлечь умного химика в лабораторию, где заранее был приготовлен опыт, показывающий, что стоградусным паром можно нагреть жидкость до 110°С и много выше. Опыт делается очень просто».