Чтение онлайн

на главную - закладки

Жанры

Великий квест. Гении и безумцы в поиске истоков жизни на Земле
Шрифт:

Последнее обстоятельство оказалось самым существенным. Из главы 8 мы помним, что монтмориллонит ускоряет образование молекул РНК и их удлинение, поскольку те располагаются на поверхности минерала и растут на ней. Получая описанным выше способом везикулы с зернами монтмориллонита внутри, команда Шостака создала идеальное хранилище для РНК. Далее ученые добавляли РНК к зернам монтмориллонита и использовали эти последние, чтобы вызвать образование везикул. Оказалось, что каждая такая везикула несла в себе зерно монтмориллонита, покрытое РНК. Важно также, что молекулы РНК из них “не вываливались”.

Выглядело все весьма элегантно: один-единственный минерал помог ученым создать на основе самого скудного набора соединений более сложные протоклетки

с нуклеиновыми кислотами внутри.

Следующие эксперименты показали, что протоклетки также способны расти за счет поглощения липидов из окружающей среды. Этот процесс оказался довольно привередливым: он происходил только при медленном добавлении новых мицелл. И все-таки он был возможен, что и продемонстрировал в 1990-е годы Луизи.

Эта же исследовательская группа сумела заставить протоклетки создавать похожие на себя “дочерние” копии – в ходе процесса, напоминающего деление: крупные везикулы продавливали через очень мелкие отверстия в ткани, придавая им форму сосиски. Полученные “сосиски” оказались неустойчивыми и быстро распадались на множество мелких везикул, так что на обычное деление клетки (с образованием двух дочерних) это походило уже не слишком, но важнее здесь то, что везикулы в процессе растеряли не всю свою РНК. В последнем эксперименте из этой серии протоклетки подвергли повторяющимся циклам роста и деления – подобное проделывают с поддерживаемой в лаборатории культурой бактерий.

В протоклетках Шостака не было ни белков, ни ферментов, ни прочей обычной для клетки машинерии. И тем не менее их сходство с живым потрясает. “Данные эксперименты стали принципиальным доказательством того, что рост и деление везикул обусловлены простыми физико-химическими явлениями и не требуют участия какой-либо сложной биохимической машинерии”, – таков был вывод ученых. Вообще-то, они явно себя недооценили. Как мы убедились в главах 4 и 6, современные клетки имеют очень сложное устройство – в них работают сообща тысячи различных компонентов. А протоклетки Шостака – несмотря на то, что они состоят всего из нескольких соединений, – воспроизводят многие фундаментальные свойства живого. Как известно, Нильс Бор говорил, что тот, кого не испугала квантовая механика, совершенно ее не понял. То же можно сказать и об экспериментах Шостака: с учетом того, насколько просто устроены протоклетки Шостака, их сходство с настоящими поистине поражает.

Статья с этими результатами была опубликована в 2003 году, спустя полвека после проведения Миллером его эпохального эксперимента, который показал возможность самопроизвольного образования биологических молекул[463]. Это были пять десятилетий застоя и вязких непродуктивных споров. Но теперь они подошли к концу и наука о зарождении жизни быстро продвигается вперед. Причем это касается как экспериментальных исследований, так и теории.

В течение десяти последующих лет ученые убедились, что их протоклетки еще более универсальны, чем казалось вначале[464]. Всего через год они продемонстрировали, насколько слаженно могут работать РНК и его липидное пристанище. Ранее Шостак и Луизи предлагали связать их воедино за счет того, что рибозимы внутри создавали новые липиды для оболочки. Но теперь группа Шостака придумала кое-что более простое.

Когда в везикуле становится слишком много РНК, давление на мембрану возрастает и она растягивается, как полный продуктов полиэтиленовый пакет. Шостак и его сотрудники выяснили, что подобные “растянутые” протоклетки могут забирать липиды у соседних везикул, которые не содержат РНК. Такие протоклетки по сути конкурируют между собой за “строительный материал”, то есть за липиды. Победителем из этой борьбы выходит тот, в ком больше РНК. Законы физики мембран стимулируют и рост наполненных РНК везикул, и уменьшение пустых везикул. По мнению ученых, это простое соревнование “могло сыграть важную роль в запуске эволюции по Дарвину”[465]. В частности, протоклетки, содержащие

РНК со способностью быстрее копировать себя, и сами растут быстрее.

Вдобавок протоклетки оказались очень устойчивы. Они выдерживали и охлаждение до 0 °C, и нагрев до 100 °C[466]. Из этого следует, что они могли бы существовать в гидротермальных источниках – как на суше, так и в океане. Мало того: нагревание открыло их новые возможности. В горячем виде они свободно пропускали внутрь небольшие молекулы вроде нуклеотидов – при нормальной температуре это невозможно. Получается, что в нагретом состоянии протоклетки могли “питаться”, вбирая в себя новый материал.

И все же была тут одна проблема. Как именно могло происходить деление протоклеток, то есть, по сути, их размножение?[467] В исходном эксперименте протоклетки необходимо было продавливать через крошечные отверстия и тем самым изменять их форму, однако это выглядит искусственно и вряд ли действительно происходило миллиарды лет назад. К тому же при таком продавливании протоклетки теряли часть своих РНК. Требовалось придумать что-то другое, получше.

Для решения этой проблемы было предложено два остроумных способа, причем предложено одним и тем же человеком – студентом Тинг Чжу. В 2009 году он и Шостак получили протоклетки, которые имели несколько слоев мембран и потому напоминали луковицы[468]. Когда им “скармливали” липиды, они превращались в более крупные вытянутые цепочки. Такие цепочки оказались хрупкими, поэтому даже небольшое движение окружающего раствора разрушало их, создавая десятки новых протоклеток, сохраняющих при этом свое содержимое. А спустя три года Чжу придумал и второй способ[469]: сначала везикулам-“сосискам” давали определенные небольшие молекулы, а потом подвергали везикулы действию света. Это запускало химические реакции, из-за которых везикулы начинали делиться. Так что протоклетки, способные к независимым росту и делению, теперь не кажутся чем-то нереальным[470].

Добиться саморепликации РНК в составе таких протоклеток оказалось посложнее – ведь надо было обойтись без сложного фермента. При этом нуклеотидам предстояло выстроиться в ряд вдоль имеющейся молекулы РНК и соединиться, образовав новую цепочку. Орджел и другие исследователи сражались с проблемой такой “неферментной репликации” еще с 1980-х годов. Теперь же Шостаку предстояло добиться этого внутри протоклетки.

Он и его студентка Катажина (Кейт) Адамала вплотную занялись этим вопросом в 2012 году. Сложностей на их пути могло возникнуть множество: например, нуклеотиды норовят иногда присоединиться к РНК не той стороной[471]. И тем не менее уже на следующий год были получены первые результаты[472].

Ученые знали, что РНК копирует себя быстрее в присутствии ионов магния. Это выглядит правдоподобно: магний относится к распространенным элементам. Но, к сожалению, он также разрушает липидную мембрану протоклеток. Адамала и Шостак решили эту проблему, добавив цитрат – соединение, которое очень похоже на лимонную кислоту из лимонов. Цитрат присутствует во всех живых организмах, а в этом опыте он требовался для связывания магния. Благодаря цитрату магний мог ускорять копирование РНК, не нарушая при этом структуру протоклеток. В итоге сочетание магния и цитрата сделало возможным саморепликацию РНК в липидной упаковке.

Позже оказалось, что железо ускоряет самокопирование РНК даже лучше, чем магний. Это в 2018 году выяснил Шостак в ходе своей совместной – с Адамала (к тому времени уже возглавлявшей собственную лабораторию) и еще несколькими коллегами – работы[473]. Такой факт особенно воодушевляет, если учесть, что ученые предполагают в океанах молодой Земли обилие железа. Сейчас его меньше, поскольку в реакции с ним активно вступает кислород из атмосферы, – но, как мы помним, исходно кислорода на Земле не было.

Поделиться:
Популярные книги

Господин Изобретатель. Книги 1-6

Подшивалов Анатолий Анатольевич
Господин Изобретатель
Фантастика:
альтернативная история
5.25
рейтинг книги
Господин Изобретатель. Книги 1-6

Крошка Тим

Overconfident Sarcasm
Любовные романы:
остросюжетные любовные романы
5.00
рейтинг книги
Крошка Тим

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Божьи воины. Трилогия

Сапковский Анджей
Сага о Рейневане
Фантастика:
фэнтези
8.50
рейтинг книги
Божьи воины. Трилогия

В комплекте - двое. Дилогия

Долгова Галина
В комплекте - двое
Фантастика:
фэнтези
юмористическая фантастика
попаданцы
8.92
рейтинг книги
В комплекте - двое. Дилогия

Помещицы из будущего

Порохня Анна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Помещицы из будущего

Курсант: назад в СССР 2

Дамиров Рафаэль
2. Курсант
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Курсант: назад в СССР 2

Избранное

Хоакин Ник
Мастера современной прозы
Проза:
современная проза
5.00
рейтинг книги
Избранное

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Оживший камень

Кас Маркус
1. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Оживший камень

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2