Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Управляемое оружие «воздух-поверхность» подразделяется на несколько подклассов по принципам наведения:

— так называемые трехточечные системы, в которых линия визирования цели является единственной базой для коррекции управляемого средства в процессе его доставки к цели;

— системы с самонаведением, использующие различные признаки цели;

— системы с телеуправлением от датчика, размещенного на управляемом средстве.

Первый подкласс (трехточечные системы) является наименее дорогим и наиболее распространенным во всем мире. В качестве примеров можно привести такие системы, как TOW, НОТ, Hellfire, «Штурм», «Вихрь». По-видимому, еще долгое время трехточечные системы будут иметь приоритет.

Именно поэтому наша статья будет посвящена анализу принципов построения обзорно-прицельных систем для подкласса трехточечных систем. К тому же эти обзорно-прицельные системы могут быть использованы для наведения управляемого оружия других подклассов, а также для неуправляемого оружия. Рассмотрим некоторые существенные требования к обзорно-прицельной системе для рассматриваемого подкласса управляемого вооружения.

Поскольку базой управления является линия визирования (JIB), оптическая ось канала управления должна быть соосной или параллельной ЛВ с минимальной угловой погрешностью, так как эта погрешность целиком войдет в общую ошибку наведения ракеты. Общее поле ошибки будет складываться из нескольких компонентов: параллакс между оптическими осями канала наблюдения (КН) и канала управления (КУ); угловая погрешность между осями КН и КУ; суммарная ошибка слежения оператора, в которой поглощена ошибка стабилизации ЛВ; погрешность системы управления ракетой (рис. 1).

Параллакс — это конструктивный параметр, который может быть равен нулю, если КН и КУ выведены на одну оптическую ось или он определяется межцентровым расстоянием между осями КН и КУ. Практически эта величина может составлять 100–200 мм, она не зависит от дальности и не является случайной ошибкой.

Угловая погрешность между осями КН и КУ регулируется и минимизируется в заводских условиях. Практически удается обеспечить параллельность осей с погрешностью 20–30 с. Следует иметь в виду, что этот параметр подвержен изменениям в эксплуатации, связанным главным образом с температурными деформациями.

Ошибка слежения за целью с учетом качества системы стабилизации и подбора коэффициентов управления в системе «человек-машина» представляет угловую величину и составляет около 0,2° т. д. (тысячных дальности).

Современные системы управления позволяют «держать» ракету на траектории относительно ЛВ «в трубке» 0,5–0,6 м независимо от дальности.

Если привести эти компоненты ошибки к линейным размерам в картинной плоскости на удалении 5000 м и просуммировать их, получившаяся суммарная погрешность окажется несколько больше 1 (1,2–1,3 м), то есть выше принятого нами для ВТО критерия.

Из вышесказанного следует, в частности, несостоятельность предложения разместить КН и КУ на самостоятельных стабилизированных платформах, связав их между собой следящей системой, так как в лучшем случае при этом вклинивается ошибка в дистанционном сопряжении КН и КУ (не менее 2'), которая добавит к «промаху» дополнительно 3–4 м (на дальности 5000 м), что совершенно неприемлемо, так как система перестанет быть высокоточной.

Рис. 2. Принципиальная схема «зеркальной» обзорно-прицельной системы

Рис. 3. Принципиальная схема «платформенной» обзорно-прицельной системы

Таким образом, обзорно-прицельная система для реализации ВТО должна состоять, как минимум, из канала наблюдения и канала управления,

оптические оси которых взаимно съюстированы и стабилизированы в инерциальном пространстве.

Для работы в дневное время канал наведения должен включать в себя оптический или телевизионный канал или оба эти канала. Если же система должна работать круглосуточно, в КН обязательно должен входить и тепловизионный датчик. Помимо этого, как правило, в состав обзорноприцельной системы включается лазерный дальномер.

Существуют две принципиально различающиеся конструктивные схемы построения обзорно-прицельных систем. В основе первой лежит гиростабилизированное зеркало, на плоскость которого сведены все необходимые каналы, размещенные неподвижно (рис. 2). Эту систему мы будем впоследствии называть «зеркальной», а вторую, в которой все каналы размещаются на единой стабилизированной платформе — «платформенной» (рис. 3).

Первую группу представляют отечественные приборы «Радуга», «Шквал» и иностранные разработки BEZU, SFIM, АРХ-334 и ряд других. Ко второй группе относятся российские приборы типа ГОЭС, американские системы TADS, М-65, французские Strix, Osiritis, Viviane и ряд других. Рассмотрим особенности обоих вариантов, их преимущества и недостатки.

Рис. 4. Зона обзора обзорно-прицельной системы

Рис. 5. Схема геометрических параметров «зеркальной» системы

D — диаметр светового потока

в в. н— угол места (верх, низ)

п.л.-угол азимута (право, лево)

Л.В.
– линия визирования

L-длина зеркала

L— расстояние до входного отверстия

Н а— высота входного окна

В бширина входного окна

Н в. н— высота верхней (нижней) части входного окна

m в.л.— проекция ЛВ на плоскость

h в.н.— часть светового потока в плоскости окна

— угол падения (отражения)

в.л.— поворот зеркала относительно нулевого положения (4–5 гр.)

П — «перископичность»

в.н.— предельное значение угла места (верх, низ)

Зоны обзора

Первая задача, которая возлагается на обзорно-прицельную систему (ОПС), — это поиск и обнаружение целей. Для этого ОПС должна иметь максимально возможную зону просмотра в связанной системе координат вертолета. Это позволяет производить разведку местности, не накладывая ограничений на траекторию полета вертолета. Иными словами, ОПС должна обеспечивать перемещение ЛВ по горизонтали и вертикали по командам операторов в широких диапазонах (рис. 4).

Поделиться:
Популярные книги

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Девочка-лед

Джолос Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-лед

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Ох уж этот Мин Джин Хо 1

Кронос Александр
1. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 1