Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Самая низкая нота, которую можно взять на рояле, имеет частоту 27,5 колебания в секунду, а самая высокая — 4224 колебания в секунду. Следовательно, длина одной волны составляет 331/27,5 = 12 метров, а длина другой волны — 331/4224 = 0,076 метра (то есть 7,6 сантиметра).

Даже диапазон рояля, очень широкий, не охватывает всех звуков, воспринимаемых человеческим ухом. Человек с нормальным слухом способен слышать самые низкие звуки, до 15 колебаний в секунду, и чрезвычайно высокие звуки, в зрелом возрасте выше 15 000

колебаний в секунду, а в детстве — даже вплоть до 20 000 колебаний в секунду. Этот максимальный интервал охватывает более десяти октав (каждую следующую октаву составляют звуки удвоенной частоты), тогда как наше зрение чувствительно к световым лучам в пределах одной-единственной октавы. В пересчете на длины волн наше ухо улавливает звуки в диапазоне от 22 метров до 2 сантиметров.

Но даже самый высокий звук, доступный нашему слуху, имеет длину волны в 20 000 раз большую, чем длина волны красного света, так что мы вполне имеем право ожидать, что при встрече с препятствиями звук и свет будут вести себя совершенно по-разному.

И все же, чем меньше длина волны (то есть чем выше звук), тем более успешно препятствие определенного размера остановит и отразит звуковую волну. Дерево должно отражать 2-сантиметровые звуковые волны; но оно не окажет никакого воздействия на 22-метровую волну.

Тогда почему бы не подняться вверх по шкале частот и не извлечь какую-либо пользу из звуков столь высоких, что человеческое ухо их уже не воспринимает (это уже ультразвуки)? Существование таких неслышимых звуков можно легко обнаружить даже без специальных приборов. Можно, скажем, сделать ультразвуковой свисток, сигналов которого никто из людей не услышит. А служебные собаки, у которых диапазон воспринимаемых звуков больше, чем у человека, будут подчиняться командам, подаваемым таким свистком.

Получение ультразвуков в широком масштабе впервые стало возможным в результате открытия, сделанного в 1880 году братьями Пьером и Жаком Кюри. (Блестящий ученый Пьер Кюри женился, кстати говоря, на Марии Склодовской, знаменитой мадам Кюри, еще более блестящей звезде ученого мира.)

Братья Кюри обнаружили, что если пластинки, вырезанные определенным образом из кристаллов кварца, очень сильно сжимать (так, что они даже слегка деформируются), то на их противоположных гранях возникают небольшие электрические заряды. Это явление было названо пьезоэлектричеством (от греческого слова «пьезо» — давление). Кюри также открыли и обратный эффект: если к противоположным граням кристалла приделать плоские электроды и подать на них электрическое напряжение, то кристалл начнет деформироваться[6]. Отсюда стало ясно, что если электрическое поле на гранях кристалла быстро увеличивать и уменьшать, то кристалл будет с той же частотой сжиматься и распрямляться, создавая таким образом звуковые колебания соответствующей частоты. А если взять достаточно большую частоту колебаний, то получится даже ультразвуковая волна.

После изобретения радиолампы оказалось практически возможным создавать электрическое напряжение, меняющееся с ультразвуковой частотой. Французскому физику Полю Ланжевену удалось получить мощные ультразвуковые волны уже в 1917 году. Шла первая мировая война, и он сразу же попытался использовать то, что такие короткие волны способны более эффективно отражаться сравнительно небольшими препятствиями. Он применил ультразвук для обнаружения подводных

лодок. Расстояние до объекта можно определить по промежутку времени, протекшему с момента излучения ультразвукового импульса до момента приема эха, и по скорости звука в воде (которая более чем вчетверо превышает скорость звука в воздухе благодаря большой упругости воды).

После первой мировой войны этот принцип использовался в мирных целях — для обнаружения косяков рыб и айсбергов, полностью погрузившихся под воду, для определения глубины океана, рельефа морского дна и т. д. Приборы, основанные на этом принципе, применялись и во время второй мировой войны (они назывались «сонар»).

* * *

Но, по-видимому, «сонар» — это одна из областей, в которых прочие виды животных опередили человечество на много миллионов лет.

Например, летучая мышь, этот умнейший пилот, искусно летает по весьма причудливому курсу. В мгновение ока меняя направление полета, летучая мышь ловит крошечных насекомых и легко избегает столкновения с такими небольшими препятствиями, как ветки. Это просто поразительно, если учесть, что она летает в сумерках.

В 1793 году итальянский ученый Ладзаро Спалланцани обнаружил, что летучие мыши могут ловить добычу и избегать препятствий в полной темноте, и даже если их ослепить. Однако они теряли эту способность, если их лишали слуха.

В начале 40-х годов нашего столетия американский физик Дж. Пирс изобрел прибор, позволяющий улавливать чрезвычайно слабые ультразвуки. И тогда сразу выяснилось, что летучие мыши непрестанно издают не только слабые писки, которые мы слышим, но и ультразвуки с частотой более 150 000 колебаний в секунду и, следовательно, с длиной волны менее 2 миллиметров (их мы не слышим).

Такие короткие волны прекрасно отражаются от насекомых и веток. Между вскриками летучие мыши улавливают эхо и выбирают дальнейший путь соответственно.

Точно так же поступают дельфины, обнаруживая, правда, не насекомых, а рыбу. Так как их жертвы побольше, дельфины не нуждаются в звуке столь высокой частоты и столь малой длины волны. Они действительно пользуются ультразвуками, но издают и звуки, хорошо слышимые человеческим ухом, — люди обычно сравнивают такие звуки со «скрипом».

Опыты, проведенные в 1955 году в Вудс Хол (штат Массачусетс), показали, что, когда дельфины «поскрипывают», они могут находить кусочки пищи размерами около 15 сантиметров даже в полной темноте. (Этими способностями дельфинов заинтересовался военно-морской флот в связи с попытками усовершенствовать существующие системы ультразвуковой локации.)

Вот в этом и заключается использование дельфинами звука не только для общения (я говорил об этом в начале главы). Жизнь в море так шумна, по всей вероятности, именно из-за необходимости добывать пищу и избегать врагов в условиях, когда света очень мало; поэтому зрение здесь гораздо менее полезно, чем на суше.

Но теперь возникает еще один вопрос. Если даже допустить, что звук у дельфинов служит прежде всего целям звуковой локации, то им достаточно было бы самого простого звукового устройства (такого, например, как у летучих мышей). Коль скоро дельфины развили очень сложный аппарат, позволяющий издавать самые разнообразные звуки, то не разумно ли предположить, что звук им служит и для других целей, требующих такого совершенства?

Поделиться:
Популярные книги

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Пипец Котенку! 4

Майерс Александр
4. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку! 4

Маленькая хозяйка большого герцогства

Вера Виктория
2. Герцогиня
Любовные романы:
любовно-фантастические романы
7.80
рейтинг книги
Маленькая хозяйка большого герцогства

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Целительница моей души

Чекменёва Оксана
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Целительница моей души

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник