Вирусы. Драйверы эволюции. Друзья или враги?
Шрифт:
Происхождение генов холерного токсина, CtxAB, остается неясным. Происходят ли они из фагового или бактериального метагенома? Мы знаем, что предковые формы CTXФ не имели генов токсина, так как были обнаружены естественные нетоксичные вибрионы, лизогенизированные фагом CTXФ, не имеющим кластера генов, кодирующих токсин (Boyd, Heilpern, Waldor, 2000). Таким образом, представляется вполне вероятным, что CTXФ приобрел гены токсина при трансдукции, когда невероятная на первый взгляд рекомбинация включила сегмент ДНК клетки-хозяина или другого фага в его геном. Эти наблюдения показывают, что конверсия фага холерного вибриона происходила множество раз, каждый раз независимо, и что холерный вибрион служит естественным хозяином этого фага. Наблюдавшаяся в этом случае полная трансдукция является характерным эволюционным приемом для фагов. Гены токсина благотворны для фага, так как позволяют ему распространяться в среде, в которой он в противном случае не смог бы зацепиться. В данном случае вирулентность и болезнетворные свойства идут рука об руку с давлением отбора и создают чрезвычайно эффективный переносчик заболевания, выкованный в ходе деятельности бесчисленных поколений, ускоренной вмешательством фага.
Выберите свой яд
Подобно безвредным морским бактериям – холерным вибрионам, обитающим в морских экологических нишах, кишечная палочка неприметно обитает в желудочно-кишечном
У лизогена кишечной палочки существует один большой недостаток. Токсины Шига могут продуцироваться бактерией 0157-Н7 только во время литической репликации фага. Продукция токсина, следовательно, связана с индукцией профага и лизисом клетки (Wagner et al., 2001; Wagner, Waldor, 2002). Таким образом, диарея, необходимая для распространения болезни, возникает за счет патогенных лизогенов кишечной палочки. Для каждой отдельной кишечной палочки это несчастье, но индуцируются не все ее лизогены, и распространение жизнеспособных генетически идентичных лизогенизированных палочек 057-Н7 гарантируется сильным поносом, вызываемым токсином. Так же как при холере, вероятность успешной передачи патогена другим хозяевам повышается параллельно с усилением диареи. Есть и другие феномены, играющие роль в заболеваниях, вызываемых патогенными штаммами кишечной палочки. Полагают, что индукция фага и высвобождение инфекционных частиц играют роль в усугублении болезни благодаря началу литического инфицирования других бактерий кишечника. Эти клетки, в свою очередь, тоже начинают высвобождать токсин Шига (Mills et al., 2013; Gamage, Strasser, Chalk, 2003). Таким образом, обладание лизогенным фагом является бомбой замедленного действия для бактерий, в которых происходит индукция, но в целом это обладание полезно для бактериальной популяции, так как повышает успешность ее размножения и передачу в человеческой популяции.
Наличие профагов в геномах бактерий может быть обоюдоострым мечом. Исследования показывают, что спонтанная реактивация профага в популяции лизогенных бактериальных клеток может происходить с невысокой, но довольно значительной частотой. В каждый данный момент индукция происходит в 1 на 1000 до 1 на 10 000 бактериальных клеток в культуре. Это фатальное событие в жизни ничтожного меньшинства популяции, но сам факт, что многие линии бактерий стабильно ассоциированы с индуцибельными профагами, позволяет предположить, что в этом заключается определенное преимущество для клеток-хозяев. Энтерогеморрагическая кишечная палочка обладает всеми этими свойствами. Индуцибельный профаг ведет себя, по сути, как ген хозяина, чей фенотип обусловливает самоубийство некоторых индивидов. Однако гены фага определяют и другой феномен – секрецию токсина. Этот фенотип некоторых индивидов полезен для всей популяции, имеющей в геноме индуцибельный профаг.
Тяжесть заболевания, вызываемого энтерогеморрагической кишечной палочкой, коррелирует с частотой индукции. Чем больше токсина выделяется, тем сильнее повреждение слизистой оболочки кишечника. Несмотря на то что индукция профагов происходит спонтанно и с низкой частотой, она усиливается в условиях стресса для бактериальных клеток. Такой ответ благотворен для генов фага, которые рискуют погибнуть в мертвой бактерии. Действительно, такое часто происходит во время заболевания. Среди условий, индуцирующих профаги, немалую роль играет активная форма кислорода, высвобождаемая иммунокомпетентными клетками в ответ на инфекцию (Wagner, Acheson, Waldor, 2001). Лечение фторхинолоновыми антибиотиками подавляет репликацию бактериальной ДНК и вызывает повреждение ДНК хромосомы, что продуцирует у фагов SOS-ответ, индукцию и выделение токсина (Zhang et al., 2000; Ubeda et al., 2005; De Paepe et al., 2014; Maiques et al., 2006). Существует много данных о том, что антибиотики стимулируют продукцию токсина клетками энтерогеморрагической кишечной палочки, и, следовательно, неудивительно, что лечение антибиотиками может ухудшить течение заболевания (Wong et al., 2000; Zhang et al., 2000). По этой причине при геморрагическом колите воздерживаются от введения антибиотиков и ограничиваются поддерживающей терапией.
В наши дни случаи заболеваний, вызванных энтерогеморрагической кишечной палочкой, и вспышки инфекции палочкой штамма 0157-Н7 встречаются редко. Большую часть времени бактерия (вместе со своим пассажиром фагом) реплицируется в организме своего естественного хозяина, чаще всего в кишечнике жвачного животного, у которого она никогда не вызывает заболеваний. Но если бактерия воспроизводится здесь, не причиняя хозяину никакого вреда, то содержит ли она в природе кодирующие токсин профаги, которые для нее являются бомбой замедленного действия, ядовитой пилюлей, реактивация которой грозит бактерии смертью? Представляется, что если подавляющее большинство палочек 0157-Н7 реплицируется в организмах крупного рогатого скота и вызывающий болезнь токсин Шига не играет роли в их репликативном успехе, то, значит, им нет никакой пользы от профага. Следовательно, должно быть какое-то положительное давление естественного отбора, которое заставляет палочку 0157-Н7 сохранять профаг в условиях главного резервуара своего вида. Сравнительное исследование множества бактериальных геномов показало, что они
Острова сокровищ
Золотистый стафилококк (Staphylococcus aureus) – широко и печально известный бактериальный патоген, который за десятилетия, прошедшие после начала эры антибиотиков, успешно приобрел целый набор генов, определяющих устойчивость к ним, что заставило сдать в архив множество антибактериальных препаратов, которыми некогда лечили заболевания, вызванные этим весьма активным микроорганизмом. Устойчивые к метициллину золотистые стафилококки стали одним из самых опасных грамположительных возбудителей, способных вызывать тяжелые и угрожающие смертью поражения в госпиталях и вне их стен. Помимо устойчивости к таким бета-лактамным антибиотикам, как метициллин, они часто приобретают поливалентную устойчивость вместе с сонмом вирулентных факторов, связанных с повышенной патогенностью и способствующих их более успешному размножению в организмах пациентов (Gordon, Lowy, 2008; Otto, 2010). Эти вирулентные, устойчивые к метициллину штаммы золотистого стафилококка распространились теперь по всему миру и часто становятся виновниками вспышек стафилококковой инфекции в больницах, воинских частях и детских учреждениях. Особенно опасны вспышки такой инфекции в больницах, где она может оказаться смертельной для ослабленных пациентов. Сегодня количество устойчивых к антибиотикам и высоковирулентных бактериальных патогенов достигло критического уровня. Главный вызов общественному здравоохранению заключается в способности бактерий претерпевать быстрые приспособительные эволюционные изменения при столкновении с антибактериальными лекарственными средствами. Золотистый стафилококк обладает этими способностями в избытке. Основная проблема заключается в отборе устойчивых к лекарствам штаммов и штаммов с усиленными или измененными болезнетворными свойствами. Эти эволюционные приспособления возникают вследствие мутаций и изменений бактериального генома, но более важная причина заключается во включении новой генетической информации, приобретенной путем горизонтального переноса генов из родственных и неродственных бактериальных геномов.
В то время как холерный вибрион и кишечная палочка становятся более вирулентными в результате получения новой генетической информации с фагами, штаммы золотистого стафилококка развиваются и изменяются вследствие приобретения дополнительных генетических элементов. Эти носители, каждый из которых часто встречается в бактериальном метагеноме, варьируют от профагов, плазмид, транспозонов до островков патогенности (Baba et al., 2002; Kuroda et al., 2001). Эти носители в совокупности можно считать содержащими «мобилому», библиотеку мобильного генетического материала, который может с замечательной легкостью обмениваться между родственными и неродственными видами бактерий. Мобилома имеет особую ценность для передающихся патогенных бактерий, которые постоянно подвергаются меняющемуся давлению отбора в организмах разных хозяев, а также испытывают воздействия разнообразной антибактериальной терапии. Фаги, плазмиды и островки патогенности являются превосходными носителями генетического разнообразия, так как могут переносить целые гены и генные кластеры между бактериями. Сложные фенотипические признаки могут, таким образом, приобретаться в результате одного, мгновенно происходящего события. Плазмиды уникальны среди этих медиаторов горизонтального переноса генов тем, что не образуют инфекционных внеклеточных форм, опираясь на конъюгацию клеток для мобилизации и переноса. Как таковые плазмиды не считаются вирусами. То, что мы не станем обсуждать их, нисколько не умаляет их важную роль в генетическом обмене между бактериальными клетками.
Фаги отвечают за поддержание микробного разнообразия, и именно они несут главную часть вины за усиление патогенности бактерий в результате конверсии фагов. Фаги облегчают адаптацию к новым хозяевам и новым условиям окружающей среды, поставляя в клетки ассоциированную с ними генетическую информацию, которая включается в хромосому клетки-хозяина. Это включение может стать основой селективного преимущества, если говорить об успешной репликации, для генома бактерии, а также и для ДНК самого фага, который эгоистично пользуется побочным преимуществом репликативного успеха своего хозяина. Фаги едут дальше вместе с геномом хозяина, но могут, время от времени, овладеть полем и стать литическими, в надежде на большой выигрыш, на обретение нового хозяина, где, вероятно, можно будет реплицировать свой геном еще быстрее.
Островки патогенности – это мобильные генетические элементы, обнаруживаемые в геномах большого числа как грамположительных, так и грамотрицательных бактерий (Novick, Christic, Penades, 2010). Островки патогенности содержат крупные кластеры генов и множество тысяч пар оснований ДНК. Появление столь многих патогенных штаммов золотистого стафилококка за такой короткий период демонстрирует мощное влияние островков патогенности на ее проявления у бактерий. Эти генные кассеты обрамлены повторяющимися последовательностями ДНК и кодируют интегразы, напоминающие таковые умеренных фагов, то есть фагов, которые превращают бактериальные клетки в лизогенные. Этот массивный набор генов кодирует белки с широким диапазоном функций, включая устойчивость к лекарствам, а также содержит гены вирулентности, кодирующие токсины, суперантигены, а также и другие новые генные продукты. Это самостоятельная и весьма ценная генетическая валюта островков патогенности. Их получение бактерией может позволить ей немедленно экспрессировать множество новых генов, что обеспечивает клетку-реципиента новым фенотипом, на который может воздействовать естественный отбор. Распространение островков как паразитов бактериальных геномов зависит от конкурентного преимущества, обеспечиваемого их генетическим грузом, и именно этот груз делает островки столь важным катализатором адаптивной эволюции бактерий. Главным фактором успеха является мобильность островков, и – вы угадали – главным фактором их мобильности являются фаги!