Чтение онлайн

на главную - закладки

Жанры

Внутреннее устройство Linux
Шрифт:

Обычно мы не раздумываем над этим вопросом, поскольку сетевое ПО содержит автоматическую систему поиска MAC-адресов, которая называется протоколом ARP (Address Resolution Protocol, протокол разрешения адресов). Хост, который использует сеть Ethernet как физический уровень и протокол IP как сетевой уровень, содержит небольшую таблицу, называемую кэшем ARP, которая сопоставляет IP-адреса адресам MAC. В Linux кэш ARP расположен в ядре. Чтобы просмо­треть кэш ARP на компьютере, используйте команду arp.

Как и для многих других сетевых команд, параметр -n здесь отключает обратный поиск DNS.

$ arp -n

Address Hwtype Hwaddr Flags Mask Iface

10.1.2.141 ether 00:11:32:0d:ca:82 C eth0

10.1.2.1 ether 00:24:a5:b5:a0:11 C eth0

10.1.2.50 ether 00:0c:41:f6:1c:99 C eth0

При загрузке компьютера кэш ARP пуст. Как же тогда MAC-адреса попадают в этот кэш? Все начинается тогда, когда компьютер желает отправить пакет другому хосту. Если целевой IP-адрес отсутствует в кэше ARP, выполняются следующие действия.

1. Хост-источник создает специальный кадр Ethernet, содержащий пакет запроса у кэша ARP тех адресов, которые соответствуют целевому IP-адресу.

2. Хост-источник передает этот кадр по всей физической сети в целевой подсети.

3. Если один из других хостов этой подсети знает правильный MAC-адрес, он создает ответный пакет и кадр, содержащий данный адрес, а затем отправляет его источнику. Зачастую отвечающий хост является целевым и просто отправляет в ответ собственный MAC-адрес.

4. Хост-источник добавляет пару адресов IP-MAC в кэш ARP и готов продолжить работу.

примечание

Помните о том, что кэш ARP применяется только для компьютеров локальных подсетей (загляните в раздел 9.4, чтобы определить ваши локальные подсети). Чтобы добраться до пунктов назначения за пределами подсети, хост отправляет пакет маршрутизатору, и эта задача в итоге переходит к кому-то другому. Конечно же, ваш хост должен знать MAC-адрес маршрутизатора и может использовать кэш ARP, чтобы выяснить адрес.

Единственная настоящая проблема с кэшем ARP может возникнуть, когда он становится устаревшим, если вы присвоили IP-адрес от одной карты сетевого интерфейса другой карте (например, при тестировании компьютера), поскольку у этих карт различные MAC-адреса. Система Unix делает недействительными записи в кэше ARP, если они неактивны в течение некоторого времени, поэтому здесь возникнет лишь небольшая задержка, вызванная недействующими данными. Можно немедленно удалить запись в кэше ARP с помощью такой команды:

# arp -d host

Можно также просмотреть кэш ARP для одного сетевого интерфейса с помощью команды:

$ arp -i interface

Страница руководства arp(8) содержит объяснение того, как вручную настроить записи в кэше ARP, но вам это вряд ли потребуется.

примечание

Не смешивайте кэш ARP с протоколом RARP (Reverse Address Resolution Protocol, протокол определения адреса по местоположению узла). Протокол RARP преобразует MAC-адрес обратно в имя хоста или в IP-адрес. До того как стал популярен протокол DHCP, некоторые бездисковые рабочие

станции и другие устройства использовали протокол RARP для получения своей конфигурации, но сегодня он применяется редко.

9.23. Беспроводная сеть Ethernet

Беспроводные сети Ethernet (сети Wi-Fi) незначительно отличаются от проводных сетей. Подобно любым проводным аппаратным средствам, они обладают MAC-адресами и применяют кадры Ethernet, чтобы передавать и получать данные, в результате чего ядро Linux способно «общаться» с беспроводным сетевым интерфейсом во многом так же, как если бы это был проводной интерфейс. Все, что находится на сетевом уровне и выше, точно такое же; главные отличия — это дополнительные компоненты на физическом уровне, такие как частоты, идентификаторы сети, безопасность и т. д.

В отличие от проводных сетевых аппаратных средств, которые очень хороши при автоматической подстройке без лишней суеты под нюансы физической составляющей, конфигурация беспроводной сети допускает намного больше свободы. Чтобы беспроводной интерфейс работал корректно, в Linux необходимы дополнительные инструменты конфигурирования.

Вкратце рассмотрим дополнительные компоненты беспроводных сетей.

Подробности передачи. Они содержат физические характеристики, такие как радиочастота.

• Идентификация сети. Поскольку одну и ту же базовую среду могут совместно использовать несколько беспроводных сетей, должна быть возможность их различения. Параметр SSID (Service Set Identifier, идентификатор сервисного набора, известный также как «имя сети») является идентификатором беспроводной сети.

• Управление. Хотя возможно настроить беспроводную сеть так, чтобы хосты взаимодействовали друг с другом напрямую, большинство беспроводных сетей управляется с помощью одной или нескольких точек доступа, через которые проходит весь трафик. Точки доступа часто выполняют функцию моста между беспроводной и проводной сетями, в результате чего обе они выглядят единой сетью.

• Аутентификация. Вам может понадобиться ограничение доступа к беспроводной сети. Чтобы это выполнить, можно настроить точки доступа таким образом, чтобы они запрашивали пароль или какой-либо аутентификационный ключ, прежде чем начать взаимодействие с клиентом.

• Шифрование. В дополнение к ограничению начального доступа к беспроводной сети, как правило, необходимо шифровать весь трафик, который передается с помощью радиоволн.

Конфигурация Linux, а также утилиты, которые работают с этими компонентами, расположены в нескольких областях системы. Некоторые находятся в ядре: Linux располагает набором расширений для работы с беспроводными сетями, стандартизирующими доступ к аппаратным средствам из пространства пользователя. По мере разрастания пространства пользователя беспроводная конфигурация может усложниться, поэтому большинство пользователей предпочитает использовать внешние графические интерфейсы, такие как апплет рабочего стола для менеджера NetworkManager, чтобы привести все в действие. Опять-таки иногда стоит посмо­треть, что происходит за кулисами.

Поделиться:
Популярные книги

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

Я сделаю это сама

Кальк Салма
1. Магический XVIII век
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Я сделаю это сама

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Леди для короля. Оборотная сторона короны

Воронцова Александра
3. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Леди для короля. Оборотная сторона короны

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Невест так много. Дилогия

Завойчинская Милена
Невест так много
Любовные романы:
любовно-фантастические романы
7.62
рейтинг книги
Невест так много. Дилогия

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая