Чтение онлайн

на главную - закладки

Жанры

Волосы. Иллюстрированное пособие для врачей, трихологов и парикмахеров
Шрифт:

После рождения человека новые волосяные фолликулы у него, увы, больше не образуются, а вот их размер меняться как раз может [14] [15] . Циклы роста и дегенерации волос сменяют друг друга на протяжении всей жизни, что подтверждает существование стволовых клеток, поддерживающих эти процессы.

Гены циркадных ритмов и циклы роста волос

Наши суточные ритмы (время отхода ко сну, время пробуждения и максимальной работоспособности) регулируются не только внешними стимулами в виде смены дня и ночи. У всех видов живых организмов, имеющих суточные (циркадные) ритмы, включая животных, растения, грибы и даже цианобактерии, внутри имеется своеобразный биохимический «маятник»: белки, вступающие друг с другом в циклические реакции с периодичностью примерно одни сутки.

14

https://www.ncbi.nlm.nih.gov/books/NBK470321/

15

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2405915/

Биохимический

«маятник» человека состоит из факторов транскрипции CLOCK и BMAL1 и генов-мишеней: трех генов с говорящим названием Periods (Per 1, 2 и 3) и двух криптохромов – Cryptochromes (Cry 1 и 2). Следует отметить, что криптохромы – это очень древние и эволюционно консервативные белки. Они присутствуют не только у животных, но и у растений, где выполняют функцию сенсоров света и тьмы и таким образом регулируют также циркадные ритмы [16] .

16

https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC1175950/

CLOCK и BMAL1 активируют PER и CRY, а те в свою очередь ингибируют транскрипционную активность BMAL1-CLOCK, формируя петлю отрицательной обратной связи. Это приводит к ритмической экспрессии комплекса BMAL1-CLOCK с периодичностью 24 часа, и этот комплекс служит своеобразным биохимическим маятником.

Рисунок 5.1. Работа комплекса CLOCK/BMAL1 лежит в основе механизма циркадных ритмов млекопитающих. Он активирует несколько генов, среди которых Per 1, 2, 3 и Cry 1, 2. Белки – продукты этих генов – перемещаются в ядро, где ингибируют транскрипционную активность комплекса CLOCK/BMAL1. REV-ERB? – еще один ген, контролируемый комплексом CLOCK/BMAL1, белковым продуктом которого является отрицательный регулятор экспрессии Bmal1. Кроме того, REV-ERB? подавляет экспрессию ингибитора клеточного цикла – p21. В отсутствие BMAL1 подавление REV-ERB? приводит к высокой экспрессии p21 и задержке зародышевых клеток волос в фазе G1, что останавливает анаген.

Рисунок 5.2. Обозначения: APM – мышца arrector pili, Bu – выпуклость, CH – клубный волос, CTS – соединительнотканная оболочка, DP – дермальный сосочек, EM – эпителиальная мембрана, HS – стержень волоса, IRS – внутреннее корневое влагалище, Ma – матрица, ORS – внешняя корневая оболочка, SB – сальная железа, SHG – вторичный росток волос [17] .

Функции генов циркадных ритмов не исчерпываются только самими циркадными ритмами – они задействованы также и в росте волос. В телогене и раннем анагене активируются гены-мишени комплекса CLOCK/BMAL1. Из-за того что в коже они экспрессируются с четким циркадным ритмом, амплитуда уровня их экспрессии наиболее высока во время телогена и раннего анагена. Это указывает на то, что их активность зависит как от циркадного механизма, так и от цикла роста волос [18] [19] [20] .

17

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

18

https://pubmed.ncbi.nlm.nih.gov/10998156/

19

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891949/

20

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

Рисунок 6. Диаграмма, отражающая ритмическую циркадную экспрессию гена Dbp (активатор транскрипции) на разных фазах цикла роста волос. Амплитуда экспрессии Dbp коррелирует с прогрессированием цикла волосяного фолликула: она становится максимальной во время телогена [21] .

Гены циркадных часов экспрессируют все типы клеток кожи, но местом наиболее заметной ритмической экспрессии циркадных генов во время телогена и раннего анагена является вторичный зародыш волоса. Это отдел, расположенный между дермальным сосочком и выпуклостью. Он содержит пролиферативные стволовые клетки, которые мигрировали из выпуклости во время позднего катагена и раннего телогена [22] [23] [24] .

Вторичные зародышевые клетки волоса во время инициации анагена активируются первичными, в результате чего формируются размножающиеся клетки волосяного матрикса, а в конечном итоге и стержень волоса [25] [26] [27] .

21

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

22

https://pubmed.ncbi.nlm.nih.gov/15617565/

23

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756832/

24

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

25

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756832/

26

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668200/

27

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

У мышей, мутантных по генам Clock и Bmal1, анаген значительно задерживается, причем этот эффект наиболее выражен у мышей с дефицитом именно Bmal1. Такие мыши имеют целый ряд отличий от мышей дикого типа. Исследования показали следующее.

• В то время как в ходе анагена в большинстве волосяных фолликулов у здоровых мышей уже образовались волосяной матрикс и стержень волоса с волосяной луковицей, мутантные по Bmal1 животные все еще оставались в самой первой его фазе. В результате волосяные фолликулы экспериментальных животных возобновили нормальное развитие цикла роста волос лишь после почти недельной задержки. При этом аномалий в структуре зрелых фолликулов анагена у мутантных по Bmal1 или Clock мышей не было, что подтверждает участие генов циркадных часов, в первую очередь, в механизмах перехода телоген-анаген.

• Во вторичном зародыше волос раннего анагена в волосяных фолликулах мутантных по Bmal1 животных отсутствовали делящиеся клетки. При этом эпидермис и дерма этих мышей их содержали, значит, дефект пролиферации специфичен именно для волосяного фолликула [28] [29] .

• Во вторичном зародыше волос волосяных фолликулов мутантных животных отсутствовал фосфорилированный белок ретинобластомы (Rb) (маркер прохождения клеточного цикла через контрольную точку G1-S), хотя в норме его очень много. Это говорит о том, что в волосяных фолликулах экспериментальных мышей клетки-предшественники вторичного зародыша волос раннего анагена задерживаются в контрольной точке клеточного цикла G1-S.

28

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705795/

29

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

• В коже мышей с дефицитом Bmal1 во время телогена оказалась затронута экспрессия нескольких генов-мишеней CLOCK-BMAL1, в том числе Rev-Erb?. Она снижалась в целых пятнадцать раз! Мы знаем, что REV-ERB? напрямую подавляет экспрессию гена, кодирующего ингибитор клеточного цикла G1-p21. Таким образом, в мутантной коже p21 активируется примерно в 2,5 раза сильнее.

• Активация p21 у экспериментальных животных привела к замедлению прогрессирования клеточного цикла в фазах G1-S в клетках-предшественниках вторичного зародыша волос [30] .

30

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871241/

Пигментация волос

Пигментация волос – это результат активности специальных клеток меланоцитов. Они названы так потому, что эти клетки производят пигмент меланин и откладывают его в стержень волоса по мере его формирования [31] . Меланоциты находятся в луковице волосяного фолликула.

Пигментация фолликулов чувствительна к многочисленным внутренним факторам. На нее влияют:

• фаза цикла роста волос;

• место расположения фолликула на теле;

31

https://www.jidonline.org/article/S0022-202X(15)41553-2/fulltext

• раса и пол;

• чувствительность к гормонам;

• генетические дефекты;

• возрастные изменения.

Пигментацию волос регулирует множество различных веществ, таких как факторы роста, цитокины, гормоны, нейропептиды и нейромедиаторы, эйкозаноиды, циклические нуклеотиды, питательные вещества, микроэлементы. Многие из этих веществ могут действовать через механизмы межклеточной сигнализации [32] .

Значение пигментации

32

https://onlinelibrary.wiley.com/doi/10.1111/j.1468–2494.2008.00456.x

Поделиться:
Популярные книги

Вдовье счастье

Брэйн Даниэль
1. Ваш выход, маэстро!
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Вдовье счастье

Господин следователь. Книга 3

Шалашов Евгений Васильевич
3. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 3

Законы Рода. Том 8

Андрей Мельник
8. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 8

Власть меча

Смит Уилбур
5. Кортни
Приключения:
исторические приключения
5.00
рейтинг книги
Власть меча

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Альда. Дилогия

Ищенко Геннадий Владимирович
Альда
Фантастика:
фэнтези
7.75
рейтинг книги
Альда. Дилогия

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Законы Рода. Том 9

Андрей Мельник
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила