Чтение онлайн

на главную - закладки

Жанры

Восемь этюдов о бесконечности. Математическое приключение
Шрифт:

По совести, я должен признаться, что не играл в эту игру уже несколько десятков лет. Я вспомнил о ней, когда писал эту книгу. Но вопросы о стратегических аспектах игры и о существовании некой выигрышной стратегии занимают меня до сих пор. Я даже готов поспорить, что такая выигрышная стратегия существует. Когда я буду старше и у меня будет больше свободного времени, я собираюсь всерьез заняться поисками этой стратегии, но, пока эти мои планы относятся к отдаленному будущему, вы вполне можете попытаться найти ее раньше меня и избавить меня от этой работы.

Монах и его задача {3} :

взгляд с обеих сторон

Однажды ранним утром, на самом восходе солнца, старый буддийский монах начал подниматься по крутому и извилистому горному склону к монастырю, стоявшему на вершине. Монах взбирался по узкой, извивающейся тропе – единственному пути в монастырь. Подъем был поистине изнурительным.

Он шел то быстрее, то медленнее, время от времени останавливаясь передохнуть, бормоча мантры, а иногда задерживаясь, чтобы немного поесть или попить воды. До монастыря на вершине он добрался в тот самый момент, когда солнце начинало садиться. Старый монах провел в монастыре несколько дней, уча молодых монахов о сострадании, о Четырех благородных истинах, о шуньяте (пустотности), об иллюзорности самосознания, о сансаре и страдании, о карме и спокойствии, о Благородном восьмеричном пути, об учении Нагарджуны и о желании избавиться от желаний.

3

Впервые я увидел эту задачу о восхождении монаха в книге Мартина Гарднера «Мои лучшие математические и логические головоломки» (My Best Mathematical and Logical Puzzles, 1994). Это чрезвычайно увлекательная маленькая книжка.

Когда же монах закончил свои поучения, пришло время спуститься с горы и вернуться в свою деревню. Он начал спускаться в то же время, когда начинал подниматься – с появлением первых солнечных лучей, – и шел в точности по тому же пути, что и раньше. Спускался старый монах, разумеется, гораздо быстрее, чем поднимался. Когда он дошел до конца спуска, ему в голову пришло, что на тропе, несомненно, есть такая точка, которую он проходил на подъеме и на спуске в точности в одно и то же время суток.

Головоломка

Как монах пришел к этому выводу? Если вы еще не нашли ответа на этот вопрос за десять секунд размышлений, вот вам вполне очевидная подсказка:

Пусть два монаха отправляются в путь на рассвете, причем один из них поднимается от подножия горы, а второй спускается с ее вершины. В какой-то точке они неизбежно встретятся.

Математика тенниса: бесконечность – это сколько?

Версия первая

В 1953 г. английский математик Джон И. Литлвуд (1885–1977) предложил следующий парадокс, известный теперь под названием «парадокс Росса – Литлвуда».

Перед входом в огромную пустую комнату выложен бесконечный ряд теннисных мячей, пронумерованных по порядку: 1, 2, 3, 4… Близится полночь. За тридцать секунд до 0:00 в комнату вносят мячи 1 и 2 и мяч номер 1 немедленно выносят из нее. За пятнадцать секунд (четверть минуты) до 0:00 в комнату вносят мячи 3 и 4, а мяч номер 2 выносят. За одну восьмую минуты до 0:00 в комнату вносят мячи 5 и 6, а мяч номер 3 выносят – и так далее. На языке математики

мы бы сказали, что за ( 1/2 )n минуты до 0:00 в комнату вносят мячи 2n – 1 и 2n, а мяч номер n из нее выносят.

Спрашивается, сколько мячей будет в комнате ровно в 0:00?

Те, кто пытается ответить на этот вопрос, замечают, что возможных ответов существует два, и у обоих почти что поровну сторонников: бесконечно много или ни одного. Как такое может быть? Рассмотрим логические обоснования обоих ответов.

Бесконечно много. В конце процесса в комнате будет бесконечно много мячей, потому что на каждом из бесконечного количества этапов в ней прибавляется по одному мячу (два заносят в комнату, но один из нее выносят). Математики формулируют это утверждение так: для любого n можно точно определить момент, в который число мячей равно n + 1. Следовательно, в 0:00 в комнате окажется бесконечно много мячей.

Ни одного. В 0:00 в комнате не будет ни одного мяча, потому что для любого мяча можно точно указать момент, в который его выносят из комнаты. Мяч номер 1 выносят, когда часы показывают полминуты до полуночи, мяч номер 2 – за четверть минуты до полуночи и так далее. Говоря математическим языком, n– й мяч выносят из комнаты в точности за 1/2 в n– й степени минуты до полуночи.

Если бы на эту тему проводился опрос, за какой ответ проголосовали бы вы?

Здесь важно понимать – хотя согласиться с этой мыслью может быть немного трудно, – что количество моментов, остающихся до полуночи, бесконечно, потому что оставшийся промежуток всегда можно разделить на два.

Я бы сказал, что правильный ответ – «бесконечно много», и даже рискнул бы утверждать, что те, кто выбирает второй ответ, вероятно, не могут отрешиться от схемы конечных рассуждений. Их стремление узнать, сколько мячей окажется в комнате «в конце» процесса, похоже на стремление узнать, какие числа находятся «в конце» последовательности натуральных чисел, то есть «в конце» ряда 1, 2, 3, 4, 5, 6, 7, 8, 9, …, 12 367, 12 368…

Все мы знаем и понимаем, что множество натуральных чисел бесконечно, и никто на свете не может сказать, какие числа находятся «в конце» их ряда, просто потому, что у этого ряда нет никакого конца.

Интересно отметить, что Блаженный Августин (354–430) полагал, что Бог видит и знает все бесконечное количество натуральных чисел и их свойства и тем самым каким-то образом превращает их в конечное множество (но это, разумеется, лишь точка зрения Блаженного Августина).

Вот две другие вариации парадокса Росса – Литлвуда.

Версия вторая

У нас снова есть бесконечный ряд теннисных мячей с номерами 1, 2, 3, 4… выложенный перед входом в огромную пустую комнату. За полминуты до полуночи в комнату вносят мячи 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 и выбрасывают из нее мяч номер 1. За четверть минуты до полуночи в комнату вносят мячи 11, 12, 13, 14, 15, 16, 17, 18, 19 и 20 и выбрасывают из нее мяч номер 2 – и так далее.

Вопрос, разумеется, остается тем же: сколько мячей будет в комнате ровно в полночь?

Поделиться:
Популярные книги

Прогулки с Бесом

Сокольников Лев Валентинович
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Прогулки с Бесом

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Жена фаворита королевы. Посмешище двора

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Жена фаворита королевы. Посмешище двора

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Возвращение Безумного Бога 2

Тесленок Кирилл Геннадьевич
2. Возвращение Безумного Бога
Фантастика:
попаданцы
рпг
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 2

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия