Чтение онлайн

на главную - закладки

Жанры

Воздушно-реактивные двигатели
Шрифт:

Так при помощи регулируемого сопла можно изменять количество протекающего через двигатель воздуха: чем меньше выходное отверстие сопла, тем меньшее количество воздуха протекает через двигатель. Таким регулируемым соплом иногда снабжаются как турбореактивные, так и прямоточные воздушно-реактивные двигатели.

Теперь, когда мы познакомились с особенностями течения воздуха через неработающий двигатель, давайте запустим его, включив подачу топлива и электрическое зажигание. Из топливных форсунок, установленных в начале средней, цилиндрической части двигателя, начнут под давлением вытекать струи топлива. В стремительно текущем воздухе произойдет распыление струи топлива на миллионы мельчайших капелек, в результате чего оно быстро испарится, образуя с воздухом горючую смесь. Электрическая искра свечи зажигания, установленной в стенке двигателя, воспламенит

эту смесь, а затем сгорание, раз начавшись, будет поддерживаться автоматически; новые порции смеси будут воспламеняться раскаленными газами — продуктами сгорания предыдущих порций.

Как только начнется сгорание, ранее неподвижно стоявшая на нуле стрелка динамометра дрогнет и сдвинется с места — это значит, что двигатель начнет развивать тягу. Чем больше будет подаваться топлива, тем горячее будут газы — продукты сгорания и, следовательно, тем больше будет тяга двигателя.

Как же изменится картина протекания воздуха через двигатель, когда начнется сгорание?

Пусть двигатель, имеющий одинаковые входное и выходное отверстия, находится в зеленом воздушном океане. Пока сгорания не происходит, струи воздуха, входящего в двигатель, неразличимы в этом океане, так как они имеют такой же цвет. Но как только сгорание начнется, воздух, входящий в двигатель, станет видимым. Перед двигателем образуется такая же светлая воронка, расширяющаяся по направлению к входному отверстию, какую мы видели, когда уменьшали выходное отверстие. Значит, сгорание топлива действует на поток так же, как уменьшение выходного отверстия: он при этом начинает тормозиться еще перед двигателем. Скорость воздуха, входящего в двигатель, равно как и его количество при этом уменьшаются. Чем больше сгорает топлива, тем меньше воздуха входит в двигатель. Создается такое впечатление, будто какая-то огневая плотина встает на пути входящего воздуха. Это явление так обычно и называется тепловым подпором.

Образование теплового подпора объясняется следующим.

Когда происходит сгорание топлива, то за счет выделяющегося при этом тепла температура воздуха, протекающего через двигатель, повышается (для простоты мы считаем здесь, как и выше, что сгорание есть простой подогрев воздуха). Но объем горячего воздуха больше, чем холодного, поэтому для прохода того же количества горячего воздуха нужны и большие проходные сечения. Правда, скорость горячего воздуха тоже увеличивается, однако увеличение скорости не компенсирует роста объема воздуха, и потребные проходные сечения с ростом температуры воздуха растут. Так как в действительности площадь выходного отверстия двигателя остается неизменной, то при сгорании оно не может пропускать прежнего количества воздуха. Поэтому при увеличении температуры продуктов сгорания количество воздуха, протекающего через двигатель, уменьшается.

Подвод тепла к потоку воздуха в двигателе вызывает еще одно интересное и важное явление. Так как средняя часть двигателя — камера сгорания — представляет собой цилиндрическую трубу и ее проходное сечение по длине остается неизменным, то по мере увеличения температуры воздуха и, следовательно, его объема скорость движения воздуха вдоль камеры сгорания растет. Но если растет скорость и, следовательно, кинетическая энергия воздушного потока, то должна уменьшаться его потенциальная энергия, т. е. давление воздуха при подводе тепла должно падать (рис. 51). Так и происходит в действительности в двигателе — давление в камере сгорания не остается постоянным, оно уменьшается тем сильнее, чем больше увеличение температуры воздуха (газов) в результате сгорания. Если бы мы хотели сохранить давление в камере сгорания постоянным, то следовало бы сделать ее не цилиндрической, а в виде расширяющейся трубы (рис. 52).

С явлением теплового подпора связан один интересный парадокс, относящийся к прямоточным двигателям. Мы говорили выше о той роли, которую играет в двигателе диффузор — он обеспечивает сжатие воздуха. Но вместе с тем мы знаем, что в результате теплового подпора давление воздуха вследствие его торможения перед двигателем увеличивается. Может быть, это позволит обойтись вообще без диффузора? А может быть, и сопло не нужно — ведь в результате сгорания увеличивается и скорость воздуха, текущего по камере сгорания? Но во что же превратится прямоточный воздушно-реактивный двигатель, если мы лишим его диффузора и сопла? В простую тонкостенную цилиндрическую трубу — камеру сгорания. Может ли такая труба развивать тягу?

Рис. 51.

Так меняется давление в работающем (в полете) прямоточном воздушно-реактивном двигателе при разных величинах площади выходного сечения. Кривые показывают отношение избыточного давления в двигателе к скоростному напору набегающего потока воздуха (избыточное давление соответствует знаку +, разрежение — знаку —). Здесь показана и форма потока перед двигателем:

а— сечение входного отверстия таково, что давление воздуха перед двигателем не меняется, б— входное отверстие уменьшено, воздух перед двигателем тормозится! его давление увеличивается, в— входное отверстие увеличено, воздух перед двигателем разгоняется, давление его уменьшается

Конечно, не может.

В самом деле, представьте себе такую трубу. В нее с большой скоростью втекает воздух и с еще большей скоростью, получающейся в результате подогрева, вытекает из нее. Следовательно, в двигателе воздух ускоряется, а это неизбежно связано с образованием реактивной силы Но тогда выходит, что такая труба все-таки может быть двигателем, так как она как будто должна развивать тягу. Однако на самом деле этого не получается. Чтобы со стороны воздуха (газов) на двигатель действовала какая-либо сила, внутри него должна быть такая поверхность, на которую действовало бы избыточное давление воздуха (силами трения воздуха о внутреннюю поверхность двигателя пренебрегаем). В прямоточном воздушно-реактивном двигателе сила тяги создается давлением воздуха, протекающего через двигатель, на внутреннюю поверхность стенки диффузора, именно здесь «приложена» сила тяги этого двигателя. Но в цилиндрической трубе такой поверхности нет. Понятно, что давление на стенки цилиндра не может дать силу тяги, которая должна быть направлена по оси двигателя, т. е. параллельно этим стенкам. Значит, действительно, такая труба не может развивать силу тяги. Где же мы ошибаемся?

Рис. 52. Таким должен быть прямоточный двигатель, чтобы давление в его камере сгорания не менялось. Сверху показано изменение давления в двигателе, снизу — изменение скорости

Ошибка эта на первый взгляд незаметна, и надо сказать, что описанный здесь парадокс нередко ставил в тупик начинающих знакомиться с прямоточным двигателем. Разгадка заключается в том, что, оказывается, не весь воздух, поступающий в двигатель спереди, вытекает из него через выходное отверстие. Часть воздуха, попав в двигатель, меняет направление на обратное и вытекает из него вперед через входное отверстие (рис. 53). Соотношение количеств воздуха, вытекающего через входное и выходное отверстия, получается таким, что результирующее воздействие воздуха на двигатель, представляющий собой цилиндрическую трубу, равняется нулю.

Рис. 53. Двигатель без диффузора тяги не создает, так как часть воздуха, попав в двигатель, меняет свое направление на обратное и вытекает вперед, в результате чего результирующее воздействие воздуха на двигатель равно нулю

Проведенное выше рассмотрение даже простейших процессов, протекающих в дозвуковом прямоточном воздушно-реактивном двигателе, показывает, что эти процессы, несмотря на чрезвычайную конструктивную простоту двигателя, оказываются далеко не такими простыми. Поэтому неудивительно, что теория прямоточных воздушно-реактивных двигателей считается исключительно сложной.

Но еще большую сложность представляет изучение процессов, происходящих в прямоточном воздушно-реактивном двигателе, рассчитанном на сверхзвуковой полет.

Конечно, принципиально процессы в сверхзвуковом прямоточном воздушно-реактивном двигателе должны быть такими же, как и в дозвуковом: сначала происходит сжатие воздуха в диффузоре, затем сгорание и, наконец, расширение нагретого воздуха (газов) в сопле. Особых осложнений не было бы, если бы торможение сверхзвукового потока в диффузоре можно было бы осуществить так же просто, как и дозвукового. На самом деле торможение сверхзвукового потока имеет принципиально отличный характер по сравнению с торможением потока дозвукового.

Поделиться:
Популярные книги

Расческа для лысого

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
8.52
рейтинг книги
Расческа для лысого

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Одержимый

Поселягин Владимир Геннадьевич
4. Красноармеец
Фантастика:
боевая фантастика
5.00
рейтинг книги
Одержимый

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Законы Рода. Том 9

Андрей Мельник
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Имперский Курьер. Том 4

Бо Вова
4. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 4

Ополченец

Криптонов Василий Анатольевич
1. Мир падающих звезд
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ополченец

Гоплит Системы

Poul ezh
5. Пехотинец Системы
Фантастика:
фэнтези
рпг
фантастика: прочее
5.00
рейтинг книги
Гоплит Системы

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2