Возможны ли измерения в теории относительности? Конечно, нет!
Шрифт:
Итак, вернемся к аксиоме неизменности (абсолютности) единиц измерения длины и угла в геометрии. Они неизменны ни при каких обстоятельствах, то есть и тогда, когда они двигаются. Но может быть их неизменность при движении вовсе не обязательна? Может они изменяются при движении, и превращаются из абсолютных единиц в относительные? А измерения как были возможны, так и останутся таковыми? Увы, это призрачные надежды, в этом случае понятие измерения также станет бессмыслицей, как и при отказе от самих абсолютных единиц. Рассмотрим здесь подробнее ситуацию с измерениями, когда (по уверениям релятивистов) длина отрезка (стержня) зависит от его скорости.
Пусть, как и прежде, имеется с десяток геометров, каждый из которых предварительно измерил один и тот же отрезок, одними и тем же единицами и, как и следовало ожидать, получил один и тот же (объективный) результат измерения (L). Пусть теперь этот отрезок двигается относительно геометров, а сами геометры двигаются ещё и относительно друг друга. Эта ситуация совершенно тождественно определяется и так: отрезок (объект) – неподвижен, а геометры (субъекты) двигаются относительно него (отрезка) с разными скоростями. Что произойдет, если среди геометров окажутся релятивисты и не релятивисты? У не релятивистов не будет проблем с измерением. У них есть аксиома неизменности фигур и при их движении. Поэтому у не релятивистов результат измерения будет одинаков для всех (объективен), однозначен, непротиворечив, и тот же самый (L). А вот что будет происходить с измерением у релятивистов? Да ничего хорошего. Объект – отрезок длиной L, уже построенный и, значит объективно существующий, должен пытаться менять свои размеры, согласно требованиям релятивиста (субъекта)? А у всех релятивистов требования различны, они же имеют несчастье двигаться с разными скоростями. И как только
5. Измерение скорости и релятивизм
В этом пункте я покажу, что при измерении скорости мы также должны опираться на аксиому неизменности фигур геометра, при любых обстоятельствах, если мы хотим что-то измерять. Согласно определению, скорость V входит в фундаментальное соотношение L=Vt, где t – время движения материальной точки со скоростью V вдоль отрезка длиной L. Перед началом измерения скорости, мы обязаны иметь часы, и пусть мы их имеем. Тогда поделив длину заранее измеренного отрезка L (путь пройденный точкой) на измеренное часами время её движения мы и узнаем (то есть измерим) скорость точки. Но что мы понимаем под словами «заранее измеренный отрезок L»? Это значит, что отрезок измеряется геометром, или физиком, который точно следует инструкциям геометра. Но у геометра есть аксиома неизменности отрезка, поэтому и у физика она также должна быть. А потому результат измерения скорости получится у всех субъектов одинаковым (объективным), так как у всех субъектов и часы одинаковы (объективны). Более того, этот результат будет однозначен и непротиворечив.
Что произойдет, если мы в этом измерении скорости забудем про аксиому неизменности? И введем, например, утверждение: длина отрезка зависит от скорости. Ситуация с измерением скорости станет неразрешимой. В самом деле. Как только точка начнет двигаться относительно отрезка, так тотчас и отрезок начнет двигаться относительно точки. И согласно уверениям релятивиста, тотчас изменится и его длина. Получается, что мы не успели ещё измерить время движения точки вдоль отрезка, а он уже стал короче, чем он был (когда его предварительно измеряли). И в результате такого «релятивистского измерения» мы измерим вовсе не скорость точки. А что мы измерим? Да все что угодно, но только не скорость. В самом деле. Чтобы измерить скорость надо сначала узнать, на сколько укоротится отрезок, когда точка начнет двигаться относительно отрезка, а отрезок начнет двигаться относительно точки. А чтобы узнать, насколько укоротится отрезок, надо сначала узнать, с какой скоростью двигается точка (или отрезок относительно точки). То есть надо сначала знать ту самую скорость, которую мы и собирались измерять. Получается порочный круг: чтобы измерить скорость точки, надо сначала знать, чему равна эта самая скорость. Точно такой же порочный круг, какой получается, когда мы пытаемся измерять длину движущегося стержня, по методу, предложенному Эйнштейном [2]. Процедура измерения скорости потеряла смысл. Итак, субъективная относительность должна быть исключена из процедуры измерения скорости, а аксиома неизменности фигур остается. И в вопросе измерения скорости мы приходим к тем же выводам, что и в предыдущем пункте. Читатель может сам легко убедится, что аксиома неизменности фигур также необходима, когда речь заходит об объективном измерении времени.
Кроме указанного выше фундаментального соотношения L=Vt имеется ещё второе фундаментальное соотношение (когда речь заходит о вращении точки вокруг некоторой оси) ?=?t, здесь ? – угол поворота, ? – угловая скорость. Из сказанного выше, следует правило. Объективное измерение длины, угла, времени, скорости, угловой скорости обязано проводиться только с соблюдением аксиомы неизменности фигур, и никак иначе. При этом произведение Vt, измеренное физиком, всегда должно равняться L, измеренному геометром; произведение ?t, измеренное физиком, всегда должно равняться ?, измеренному геометром. И в таких измерениях нет места субъективному релятивизму. А почему указанные выше соотношения являются фундаментальными? Да потому, что с них-то как раз и начинается физика, и это начало принято ныне называть кинематикой точки. Мы можем пока ничего не знать про силу, массу, законы сохранения, заряд и т. д. Но мы не можем не уметь выражать в математической форме, самое общее для всей природы явление – движение точки. У геометра есть понятие движения, но нет понятий «быстро или медленно, долго ли, коротко ли». Его наука обходится и без них. А вот у физика они появляются и это – скорость, время. И указанные выше фундаментальные соотношения связывают по сути дела исследование геометром свойств пространства и движения в нем, с теми же свойствами, исследуемыми физиком. И физик представляет понятие движения в виде произведения двух множителей: скорости и времени. Вот почему в своих основаниях геометрию и физику нельзя различить, как отдельные науки. Выражаясь образно, я говорю: «Геометрия и физика это разные деревья, однако, у них одни и те же корни». И каковы же эти корни? Это – два экспериментальных факта: 1-й – построения геометра, 2-й – измерения геометра.
6. Кое-что о материалистах и идеалистах
Часто можно слышать упрек (и в мой адрес тоже). Вот вы говорите, что время есть L/V, а после этого говорите, что скорость есть L/t. И получается порочный круг в рассуждениях. Это не хорошо! Да, формально это – порочный круг. Но он всегда появляется там, где речь заходит об основных понятиях. В самом деле. В тройке величин L, V, t две из этих величин обязательно являются настолько основными, что «основнее уже некуда». И их нельзя определить через другие, уже известные понятия, форме какого-то утверждения. В таких случаях порочный круг разрывается посредством обращения к экспериментальному факту (у нас измерению). Как разрывается порочный круг, например, по отношению к понятию время? По правилу: «Если я знаю, как измерять время, то я знаю что такое время. Потому, что в знании как оно измеряется, как раз и содержится знание о том, что такое время. Но если я не знаю, как оно измеряется, то я уже ничего не знаю о том, что такое время». Это правило основано на материалистическом подходе к основным понятиям науки. От экспериментального факта (измерения), к его рациональному осмыслению. Идеалист в науке действует не так. Он начинает свои рассуждения не от факта измерения, существование которого уже неоспоримо (он и так уже имеется), а от мысли (субъективной) в его голове. Однако такая мысль всегда может быть оспорена другими субъектами и, более того, может оказаться ложной. В современной физике основными величинами (чаще всего) считаются длина и скорость света (c). Поэтому, чтобы уметь измерять время, достаточно построить часы, показания которых не противоречат соотношению L/c. Но так было не всегда. Например, в начале прошлого века, когда ещё не были достаточно хорошо изучены свойства скорости света, основными величинами были длина и время.
Неплохо здесь привести пример, как разрывается порочный круг в основных понятиях геометрии. Это делается точно так же, как и в предыдущем примере, по-материалистически: от экспериментального факта (построения) к его рациональному осмыслению. В самом деле. Меня спрашивают: «Что такое прямая, извольте дать определение». И как бы я ни старался «дать определение», всякий раз меня будут уличать или в порочном круге, или в тавтологии. И многим это хорошо известно. Почему так получается? Да потому, что понятие прямая – основное понятие, настолько основное, что «основнее некуда». И здесь я буду уже применять материалистическое правило: «Если я знаю, как построить прямую, то я знаю, что это такое. Почему? Потому, что
К неевклидовым геометриям я ещё вернусь, когда я буду обсуждать вопрос о возможности измерений в неевклидовых геометриях. А сейчас нам важно увидеть, какую негативную роль играет идеализм в физико-математических науках, особенно в их основаниях. При определении основного понятия идеалист всякий раз переходит от одной мысли к другой, а не от экспериментального факта к мысли о нем, а затем только к другим мыслям (как это делает материалист). В результате такого подхода идеалист неизбежно впадает в порочный круг. Всякое утверждение идеалиста в этом порочном круге всегда может быть оспорено. И не только. Оно (утверждение) может просто оказаться ложным. Всегда найдется человек, который спросит идеалиста: «Как Вы это узнали?» И тому, кому будет задан этот вопрос, придется долго и нудно объяснять, как он это узнал. И объясняя все это, идеалист неизбежно втянется в тот же порочный круг, по которому он и кружил. Вопрос о том, как вы это узнали, станет чисто риторическим (лишним или ненужным) только тогда, когда вы в своих рассуждениях укажете на эксперимент. Вы укажете на него, сказав: «Я узнал это из этого экспериментального факта». Почему этого будет достаточно? Да потому, что экспериментальный факт не нуждается в том, чтобы его существование кто-то доказывал или кто-то опровергал. Он будет существовать независимо от этого, одинаково для всех, он объективен. Но для того, чтобы так поступать, надо из идеалиста превратиться в материалиста. А это оказывается не так-то просто. Так, например, ни А. Пуанкаре, ни А. Эйнштейн так и не стали материалистами, хотя их обоих за идеализм в науке критиковали ещё при жизни. Идеализм в физико-математических науках как раз и подготовил основание для построения субъективной релятивистской физики. В следующем пункте мы увидим, что основания математики также покоятся на экспериментальных фактах, а не на каких- то идеях, не связанных ни с каким опытом.
7. Измерение и математика
Ну а что же математик? Он, кроме всего прочего, пишет формулы. Но у него также есть, те же аксиомы. У математика всякая величина, входящая в формулу, обязана обладать свойством измеряемости, а потому каждой такой величине соответствует абсолютная единица. Более того, у математика все величины (и буквенные) всегда «безразмерны», а у всех математиков единица одна и та же (объективна). Именно поэтому все формулы математика объективны. Они одни и те же для всех математиков и геометров. К этому факту мы настолько привыкли, что считаем его само собой разумеющимся. Однако достаточно в формуле появиться всего лишь одной величине, не обладающей свойством измеряемости, как тут же формула потеряет математический смысл, и превратится в набор букв. Это, например, будет означать, что в любой формуле, любой из знаков, <, >, =, может быть заменен на любой другой, из этой же тройки. В самом деле. Если нечто не измеряемо, то мы не можем сказать, чему равно это нечто. А значит, мы не можем записать и равенство, в котором указано, чему равно это нечто. Поэтому мы можем записать лишь формулы, в которых знаки <, >, =, совершенно равноправны. И таково свойство любой формулы. Математика это не устраивает. Мы видим, что в вопросе измерений, математик находится в подчинении геометра, и никоим образом не противоречит ему. Вот почему все расчеты по формулам математика, совпадают с построениями геометра (с точностью до ошибки эксперимента).
А теперь зададим себе вопрос, кому принадлежит, выделенное только что курсивом утверждение о том, что мы можем записать, а что не можем? Материалисту-математику, или идеалисту-математику? Для ответа на этот вопрос надо сначала узнать, откуда взялись знаки <, =, >. И вот некий математик следит за процедурой измерения. Наблюдая за ней математик всякий раз отмечает, что измерительный инструмент или прибор всегда дают один из трех ответов. Или измеряемая величина заведомо меньше эталонной, или измеряемая величина заведомо больше эталонной, или прибор не может отличить эталонную величину от измеряемой. Почему не может? Да потому, что «слишком уж они одинаковы», а у всякого прибора или инструмента точность измерений не идеальна, а реальна. И так происходит со всеми измерительными инструментами или приборами. Осмыслив измерительный опыт, математик говорит: «Мне нужны три знака, которые я обозначу так: <, =, >. Эти знаки я буду вставлять в свои формулы, и они разобьют формулу на две части, левую и правую. Эти знаки и будут показывать результат измерения левой и правой частей». Таким образом, у этого математика знаки меньше, равно, больше появились в результате осмысления экспериментального факта – измерения. А потому этот математик – материалист. Именно ему и принадлежит, выделенное выше курсивом утверждение. То же самое я могу изложить и в другом, равносильном рассуждении. Математик-материалист говорит: «Я ставлю между левой и правой частью своего выражения тот знак, который бы показал прибор, если бы им была измерена левая и правая часть выражения. А для этого обе части моего выражения должны обладать свойством измеряемости. Если хотя бы одна из этих частей не обладает свойством измеряемости, то измерительный прибор не покажет мне никакого знака. А значит и я не смогу поставить никакого знака. В лучшем случае, я смогу лишь поставить все три знака <, =, >, и соединить их вместе логическим, неисключающим или». А что же математик-идеалист думает о знаках <, =, >? Их появление он не связывает с фактом измерения. Он полагает, что эти знаки уже имелись в готовом виде, где-то в «пространстве идей»». Он лишь отыскал их в этом «пространстве идей», благодаря своему мощному уму, и включил их в математическую формулу. Такой математик уже готов к восприятию релятивизма, как к чему-то само собой разумеющемуся. Так, например, Д. Гильберт – математик-идеалист. Он с увлечением помогал Эйнштейну преобразовывать к удобному виду уравнения общей теории относительности. Разве могла ему придти в голову мысль, что величины, входящие в его формулы, обязательно должны обладать свойством измеряемости? Конечно, нет! Знак равенства в любом уравнении не говорит идеалисту ничего о том, что этот знак требует какой-то измеряемости (как и знаки меньше, больше). Об этом он говорит только математику-материалисту. На деле же, величины, входящие в «уравнения» Эйнштейна, не обладают свойством измеряемости, и знак равенства в этих «уравнениях» только внешне похож на настоящий, математический знак равенства. Мы видим, что идеализм в математике играет такую же негативную роль в познании законов природы, как и в геометрии и физике. В дальнейшем (впрочем, как и до этого) я буду вести свои рассуждения только с точки зрения материалистов: геометров, математиков, физиков. О различном подходе к науке материалистов и идеалистов (геометров и математиков) я довольно подробно писал в 5-й главе книги [5], а также здесь [6].
Конец ознакомительного фрагмента.