Вселенная в одном атоме: Наука и духовность на служении миру
Шрифт:
Модель «пудинга с изюмом» была разработана в конце XIX в. после открытия Джозефом Джоном Томсоном отрицательно заряженного электрона; тогда возникло предположение, что положительный заряд, уравновешивающий отрицательный заряд электрона, заполняет атом подобно пудингу, в котором электроны похожи на изюмины. В начале XX в. Эрнест Резерфорд обнаружил, что, когда золотую фольгу обстреливают потоком положительно заряженных альфа-частиц , большинство из них проникает сквозь нее, но некоторые отскакивают назад. Из этого он совершенно справедливо заключил, что положительный заряд не может заполнять атомы золота как пудинг, но должен быть сосредоточен в их центре; когда альфа-частица попадает в центр атома золота, положительного заряда последнего оказывается достаточно для того, чтобы оттолкнуть ее. Исходя из такого наблюдения, Резерфорд сформулировал
Во время этой беседы Бом также обрисовал мне в общих чертах суть спора между Нильсом Бором и Эйнштейном по вопросу интерпретации квантовой физики. Суть вопроса сводилась к отрицанию Эйнштейном принципа неопределенности; в центре спора лежала проблема, является ли реальность на ее базовом уровне недетерминированной, непредсказуемой, вероятностной. Эйнштейн полностью отрицал такую возможность, что отразилось в его знаменитом высказывании «Бог не играет в кости». Этот рассказ живо напомнил мне мою собственную буддийскую традицию, в которой диспут занимает значительное место в формулировании и обновлении многих философских идей.
В отличие от теоретиков раннего буддизма современные физики могут до невероятных пределов расширять воспринимающую способность глаза благодаря использованию различных инструментов, таких как гигантские телескопы (например, космический телескоп Хаббл) или электронные микроскопы. Результатом стало накопление совершенно невообразимых ранее объемов эмпирических знаний об устройстве материальных объектов. В свете таких изменений я настоял на необходимости преподавания основ современной физики в некоторых монастырских учебных заведениях тибетского буддизма. При этом я указывал на то, что мы таким образом фактически не вводим в учебную программу какой-то новый предмет, а лишь усовершенствуем уже имеющийся учебный план. И я очень рад, что теперь в некоторых академических монастырских учебных заведениях профессора и студенты старших курсов западных университетов проводят регулярные семинары по вопросам современной физики. Я надеюсь, что результатом этого процесса станет полноценное введение курса современной физики в учебные планы тибетских монастырей.
Хотя мне довольно давно было известно о существовании специальной теории относительности Эйнштейна, первое ее объяснение вместе с некоторыми философскими выводами я получил опять-таки от Дэвида Бома. Поскольку у меня отсутствует необходимая математическая база, преподавание мне основ современной физики, а особенно такой таинственной вещи, как теория относительности, было непростой задачей. Когда я вспоминаю терпеливость Бома, его мягкий голос и спокойную манеру поведения, а также его заботу о том, чтобы каждый аспект объяснения был мною полностью понят, меня переполняет чувство благодарности к этому человеку.
Любой человек, который хотя бы на самом общем уровне попытается понять теорию относительности, немедленно столкнется с тем, что излагаемые Эйнштейном принципы противоречат привычному для нас здравому смыслу. В своей теории Эйнштейн выдвигает два постулата: постоянство скорости света и принцип относительности, согласно которому все физические законы должны быть абсолютно одинаковы для всех наблюдателей, находящихся в движении относительно друг друга. Исходя из этих двух предпосылок, Эйнштейн полностью преобразил научное понимание пространства и времени.
Его теория содержит хорошо известную формулу, связывающую материю и энергию: Е = тс2 (надо сказать, что это единственная научная формула, которую я знаю, что неудивительно, поскольку теперь ее пишут даже на футболках), а также ряд поразительных мысленных экспериментов с парадоксальными результатами. Многие из них, такие как парадокс близнецов из специальной теории относительности, замедление времени или сжатие объектов на околосветовых скоростях, получили сегодня экспериментальное подтверждение. Парадокс близнецов, согласно которому один из братьев улетает на космическом корабле, движущемся со скоростью, приближающейся к скорости света, к звезде, отстоящей на расстояние в двадцать световых лет, а затем возвращается
Полное понимание парадокса близнецов требует умения производить сложные математические вычисления, что находится за пределами моих возможностей. Но, насколько я могу понять, главный вывод из теории относительности Эйнштейна состоит в том, что представления о пространстве, времени и массе не могут считаться абсолютными; эти категории нельзя рассматривать в качестве независимых, постоянных и неизменных субстанций или сущностей. Пространство не является независимым трехмерным объектом, а время также не есть отдельная сущность; напротив, они сосуществуют в четырехмерном континууме пространство-время. Коротко говоря, специальная теория относительности Эйнштейна утверждает, что в то время как скорость света есть величина постоянная, в мире не существует абсолютной, исключительной системы отсчета, и все, включая пространство и время, в абсолютном смысле является относительным. Это поистине знаменательное открытие!
Буддийской философии не чужда мысль о том, что время представляет собой относительную категорию. Еще в начале II в. н.э. философская школа саутрантика возражала против абсолютности понятия времени.
Разделяя временной процесс на прошлое, настоящее и будущее, саутрантики показывали взаимозависимость всех этих трех категорий и настаивали на несостоятельности любых представлений о существовании реально независимого прошлого, настоящего и будущего. Они показывали, что время не следует считать в подлинном смысле реальной сущностью, независимой от находящихся во времени феноменов, но что оно должно пониматься как способ описания отношений между ними. Помимо и независимо от непостоянных, преходящих феноменов, на основе наблюдения которых мы строим концепцию времени, не существует никакого иного реального «времени», подобного, например, огромному сосуду, в котором появляются вещи и события и который существовал бы при этом независимо от них и сам по себе.
Эти аргументы в пользу относительности времени, разработанные впоследствии Нагарджуной, относятся прежде всего к области философии, но важно и то, что в буддийской философской традиции уже около двух тысяч лет назад шла речь об относительности понятия времени. И хотя мне говорили, что некоторым ученым эйнштейновское четырехмерное пространство-время видится именно наподобие некоего гигантского постоянно существующего сосуда, содержащего в себе события и объекты, для буддийских мыслителей, знакомых с аргументацией Нагарджуны, демонстрация эйнштейновского принципа относительности, особенно осуществленная посредством его знаменитых мысленных экспериментов, может очень помочь в расширении представлений об относительной природе времени.
Должен признаться, что мое понимание квантовой теории далеко от совершенства, хотя я очень старался постичь ее. Правда, мне говорили, что один из величайших теоретиков в области квантовой физики Ричард Фейнман писал: «Могу с уверенностью утверждать, что никто не владеет полным пониманием квантовой механики», — поэтому в своем непонимании я оказался, по крайней мере, в неплохой компании. Но даже для такого человека, как я, который не в состоянии проследить все сложные детали математической теории, — а математика представляет собой такую область современной науки, с которой у меня, кажется, нет вовсе никакой кармической связи, — очевидно, что мы не можем говорить о субатомных частицах как о детерминированных, независимых сущностях, для которых полностью выполняется логический закон исключенного третьего. Элементарные составляющие вещества и фотонов (то есть базовые субстанции материи и света соответственно) могут проявляться как частицы, или как волны, или как и то и другое одновременно. (Интересно, что Джордж Томсон, получивший Нобелевскую премию за открытие волновых свойств электрона, является сыном того самого Дж. Дж. Томсона, который получил такую же премию за экспериментальное подтверждение того, что электрон является частицей.) Наблюдаем мы электрон как частицу или как волну — это зависит от наших действий в качестве наблюдателей, например, от нашего выбора аппаратуры и метода измерений.