Вселенная
Шрифт:
Я сдал этот тест. Хотелось надеяться, что в результате можно не сомневаться, но хорошо бы проверять такие вещи научным методом.
Сканирование моего мозга выполнил нейрофизиолог Дэвид Пёппель у себя в лаборатории в Нью-Йоркском университете. В отличие от МРТ, когда в результате вы получаете красивые снимки, но без достаточного временного разрешения, МЭГ не слишком хорошо показывает, где именно в мозге протекают те или иные процессы, но фиксирует их во времени с точностью до миллисекунд.
Это важно, поскольку наш мозг — затейливо связанная многоуровневая система, на работу которой требуется время. Отдельные события на нейронах происходят по несколько десятков раз в миллисекунду, но лишь через десятки миллисекунд несколько
Большая часть сложной умственной работы в мозге выполняется нейронами. Нейроны связаны глиальными клетками, обеспечивающими им поддержку и защиту. Глиальные клетки могут играть определённую роль в коммуникации между нейронами, но все информационные сигналы в мозге передаются по нейронам. Типичный нейрон имеет отростки двух типов: дендриты, принимающие сигналы извне, и (обычно всего один) аксон, по которому транслируются эти сигналы. Тело нейрона имеет в поперечнике менее десятой доли миллиметра, но длина аксона может составлять от миллиметра до метра. Когда нейрону требуется отправить сигнал, он «срабатывает», отправляя по аксону электрохимический импульс. Этот сигнал подхватывается другими нейронами в соединительных точках, которые называются синапсами. Как правило, синапс состоит из дендрита, подсоединённого к аксону, но мозг — запутанная штука, поэтому в нём возможны и разнообразные другие соединения.
Карта магнитных полей в непосредственной близости от моего мозга; такая картинка возникает при прослушивании звукового сигнала
Итак, коммуникация между нейронами происходит путём обмена электрически заряженными молекулами, перебрасываемыми от аксонов к дендритам. Любой физик вам скажет, что при движении заряженных частиц возникает магнитное поле. Когда я о чём-то думаю, между нейронами моего мозга перетекают заряженные частицы, генерирующие едва заметное магнитное поле, лишь слегка ощутимое за пределами черепа. МЭГ-аппарат, фиксирующий такие магнитные поля, может в точности определить, когда именно срабатывают мои нейроны.
Пёппель с коллегами используют этот метод для изучения восприятия, познания и языковых функций мозга. Находясь в аппарате МЭГ, я слушал разные бессмысленные сигналы, а оператор определял, сколько времени пройдёт, пока я сознательно восприму этот сигнал как звук. Речь шла о десятках миллисекунд, о целых каскадах реакций коры головного мозга.
Однако меня больше впечатлил другой, более прозаический момент — эти датчики, подключённые к голове, улавливали мои мысли. Так называемая мысль чётко и безошибочно соотносится с движениями определённых заряженных частиц у меня в голове. Это удивительный, отрезвляющий факт об устройстве мира. Что бы подумали о нём Декарт и принцесса Елизавета?
Лишь немногие сегодня станут отрицать, что мышление связано с процессами, происходящими в мозге. Но существует разница между теми, кто считает мышление просто «способом рассуждения» о физических процессах в мозге — вроде тех, что зафиксировала у меня в мозге МЭГ, и теми, по мнению которых в этом процессе присутствует и дополнительная, внефизическая составляющая. Стоит немного поразмыслить о том, как именно работает мозг, чтобы понять, почему физическая трактовка столь убедительна.
* * *
Мозг — это сеть взаимосвязанных нейронов. В главе 28 мы кратко обсуждали, как сложные структуры могут возникать путём постепенного накопления мелких единиц, слагающих более крупные, причём интересная структурность прослеживается
Считается, что носителем информации в мозге являются не нейроны как таковые, а способы их соединения. Каждый нейрон связан с одними нейронами, но не с другими; именно так и определяется сетевая структура мозга, именуемая коннектома.
Коннектома — это, в сущности, список всех отдельно взятых нейронов в мозге с учётом всех соединений каждого из них. Это поразительно сложная система: в человеческом мозге около 85 миллиардов нейронов, каждый из которых соединён с тысячью или более других нейронов, поэтому речь идёт о ста триллионах или даже большем числе соединений. Сложно заглянуть в человеческий мозг и рассмотреть все эти соединения, но именно такова цель нескольких исследовательских проектов в области нейрофизиологии, которые реализуются прямо сейчас. Полная характеристика человеческой коннектомы содержала бы примерно миллион миллионов гигабайт информации.
Каждый нейрон собирает входящую информацию от других нейронов, а иногда — от внешнего мира. Имея эту информацию, он «решает», когда срабатывать. Срабатывание — это однозначный ответ: либо оно происходит, либо нет; но входная информация, которую может получать нейрон, довольно разнообразна. На «приём» каждого входящего сигнала нейрон тратит примерно сорок миллисекунд, а на передачу каждого входящего сигнала тратится одна миллисекунда. Это колоссальный объём информации. Сорок отдельных входных сигналов, поступающие от пары тысяч различных синапсов, дают примерно 40 x 2000 = 80 000 «бит» данных. Таким образом, нейрон может получить около 280000 вариантов входящих сообщений, прежде чем решит — срабатывать или нет.
Подробные знания о человеческой коннектоме сами по себе не позволяют нам приблизиться к пониманию того, как в человеческом мозге организовано мышление. Не все нейроны одинаковы, поэтому, зная, как они соединены, мы знаем не всё. Учёные полностью картировали коннектому одного многоклеточного организма — это крошечная нематода C. elegans, плоский червь. У наиболее распространённой разновидности этой нематоды ровно 959 клеток, 302 из которых — нейроны. Мы знаем, как все эти нейроны сочетаются друг с другом — всего среди них насчитывается около 7000 соединений, — но это не позволяет понять, как думает плоский червь. Можно сказать, что мы изучили карту автомагистралей, но не схемы дорожного движения, которые там существуют. Может быть, когда-нибудь нам удастся прочитать, о чём думает нематода.
Коннектома нематоды C. elegans — компьютерная модель из проекта OpenWorm
Люди со временем меняются, и наши коннектомы меняются вместе с нами. Соединения укрепляются, поскольку многократное срабатывание определённых сигналов повышает вероятность, что конкретные синапсы будут срабатывать и в будущем. Мы считаем, что воспоминания формируются именно таким образом: связи между синапсами усиливаются и ослабевают в ответ на стимулы. В 2000 году нейропсихиатр Эрик Кандель стал одним из лауреатов Нобелевской премии по медицине за подробное исследование того, как это происходит у конкретного организма — непримечательного морского слизня. Слизни не слишком хорошо что-либо запоминают, но Кандель научил их распознавать некоторые простые стимулы. Затем он продемонстрировал, что эти новые «воспоминания» сопряжены с изменениями синтеза белков в нейронах, из-за чего форма нейронов меняется. Кратковременная память связана с теми синапсами, связи между которыми усиливаются, а долговременная память связана с образованием совершенно новых синапсов.