Введение в электронику
Шрифт:
Глава 9. Магнетизм
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Различать три типа магнитов.
• Описать основные формы магнитов.
• Описать различия между постоянными и переменными магнитами.
• Описать магнитные свойства Земли.
• Сформулировать законы магнетизма.
• Объяснить явления магнетизма на основе атомной теории и наличия у электронов спина.
• Объяснить магнетизм на основе теории доменов.
• Описать силовые линии и их значение.
• Дать определение проницаемости.
• Описать магнитное действие тока, текущего через проводник.
• Описать принцип работы электромагнита.
• Объяснить,
• Дать определение магнитной индукции.
• Дать определение остаточной намагниченности и остаточного магнетизма.
• Дать определение магнитного экрана.
• Описать, как используется магнетизм для получения электричества.
• Сформулировать основной закон электромагнетизма.
• Описать, как правило левой руки для генераторов может быть использовано для определения полярности индуцированного напряжения.
• Описать, как генераторы постоянного и переменного тока превращают механическую энергию в электрическую.
• Описать, как работает реле в качестве электромеханического переключателя.
• Обсудить сходство дверного звонка и реле.
• Обсудить сходство соленоида и реле.
• Объяснить, как работает магнитная лента в магнитофоне.
• Описать, как работает громкоговоритель.
• Объяснить, как запоминается и считывается информация при магнитной записи.
• Описать, как работает двигатель постоянного тока.
Электричество и магнетизм неразделимы. Понимать суть электричества означает понимать связь, которая существует между магнетизмом и электричеством.
Электрический ток всегда создает магнитное поле, а магнитное поле является главным способом получения электричества. Кроме того, электричество проявляет специфические свойства под влиянием магнетизма.
В этой главе рассмотрен магнетизм, электромагнетизм и связь между магнетизмом и электричеством.
Слово магнит происходит от слова магнетит, названия минерала, обнаруженного в Магнезии в Малой Азии. Этот минерал — природный магнит. Другим типом магнитов являются искусственные магниты. Они изготовлены из смеси мягкого железа и магнетита. Третьим типом магнитов являются электромагниты. В них магнитное поле создается током, текущим по катушке с проводом.
Магниты имеют различные формы (рис. 9–1). Наиболее часто встречаются подковообразные, а также в виде бруска или кольца.
Рис. 9–1. Магниты имеют различные формы и размеры.
Магниты, сохраняющие свои свойства, называются постоянными магнитами. Магниты, сохраняющие только малую часть своих свойств, называются временными магнитами.
Магниты изготовляют из металлических или керамических материалов. Алнико (алюминий (Аl), никель (Ni) и кобальт (Со)) и Кунифе (медь (Си), никель и железо (Fe)) — это два магнитных сплава, используемых для изготовления магнитов.
Сама Земля является громадным магнитом (рис. 9–2).
Рис. 9–2. Северный и Южный магнитные полюса «Земли расположены близко к географическим Северному и Южному полюсам, но не совпадают с ними.
Северный
Магнит поворачивается в направлении север-юг благодаря закону, аналогичному для положительных и отрицательных зарядов: одноименные магнитные полюса отталкиваются, а разноименные — притягиваются. Магнитные полюса обозначаются цветом: Северный полюс — красным, а Южный полюс — синим.
Природа магнетизма — свойств магнита — имеет в своей основе свойства атома. Электроны, двигаясь по орбитам вокруг ядра атома, вращаются также вокруг своей оси, подобно Земле, двигающейся по орбите вокруг Солнца. Это движение электростатических зарядов создает магнитное поле. Направление магнитного поля зависит от направления вращения электронов. Только железо, никель и кобальт являются природными магнитными элементами.
Каждый из этих материалов имеет по два валентных электрона, которые вращаются в одном и том же направлении.
Электроны в других материалах имеют тенденцию вращаться в противоположных направлениях, что лишает их магнитных свойств.
Ферромагнитными материалами называются материалы, реагирующие на действие магнитных полей. В ферромагнитных материалах атомы объединяются в домены — группы атомов с упорядоченными магнитными полями, вроде микромагнитов. В ненамагниченном материале магнитные домены расположены хаотично, и суммарный магнитный эффект равен нулю (образец не является магнитом) (рис. 9–3).
Рис. 9–3. Домены в ненамагниченном материале ориентированы хаотично и образец не создает магнитного поля.
Если материал намагнитить, то домены выстраиваются в одном направлении, и материал становится магнитом (рис. 9–4).
Рис. 9–4. Когда материал намагничен, все домены ориентируются в одном направлении.
Если намагниченный образец разделить на маленькие кусочки, каждый кусочек станет магнитом со своими собственными полюсами.
Доказательством «доменной теории» является то, что магнит при нагревании или механическом сотрясении теряет свой магнетизм (домены возвращаются в неупорядоченное состояние). Искусственный магнит, оставленный в покое, постепенно теряет свой магнетизм. Для предотвращения этого прямоугольные магниты должны укладываться стопкой противоположными полюсами друг к другу; подковообразные магниты должны быть замкнуты предохранительным бруском (рис. 9–5). Оба метода позволяют сохранить магнитное поле.
Рис. 9–5. Для предотвращения потери магнитных свойств плоские магниты укладываются в стопку один на другой (А); между полюсами подковообразного магнита размещается замыкающий брусок (Б).
Магнитное поле состоит из невидимых силовых линий, окружающих магнит. Эти линии можно «увидеть», поместив над магнитом лист бумаги, посыпанный железными опилками. Если бумагу слегка потрясти, то опилки сами упорядочатся в виде определенных линий, отражающих притягивающие их силы (рис. 9–6).