Введение в электронику
Шрифт:
Глава 26. Оптоэлектронные устройства
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Перечислить три категории полупроводниковых устройств, которые реагируют на свет.
• Классифицировать основные частотные диапазоны света.
• Перечислить основные светочувствительные устройства и описать их работу и применения.
• Перечислить основные светоизлучающие устройства и описать их работу и применения.
• Нарисовать схематические обозначения оптоэлектронных устройств.
• Перечислить
Полупроводники вообще, и полупроводниковые диоды в частности, широко используются в оптоэлектронике. А именно, в качестве устройств, взаимодействующих с электромагнитным излучением (световой энергией) в видимом, инфракрасном и ультрафиолетовом диапазонах.
Три типа устройств, которые взаимодействуют со светом:
• Устройства для регистрации света;
• Устройства для преобразования света;
• Светоизлучающие устройства.
Полупроводниковый материал и использованная техника легирования определяют длину световой волны для каждого конкретного устройства.
Свет — это электромагнитное излучение, видимое человеческим глазом. Свет распространяется подобно радиоволнам. Как и радиоволны, свет имеет свою длину волны.
Свет распространяется в вакууме со скоростью 300000000 метров в секунду. В различных средах скорость света меньше. Частота световых колебаний лежит в диапазоне от 300 до 300000000 гигагерц (1 гигагерц = 1000000000 герц). Из этого частотного диапазона только небольшая часть видима человеческим глазом. Видимый диапазон простирается примерно от 400000 до 750000 гигагерц. Частота инфракрасного излучения лежит ниже 400000 гигагерц, а частота ультрафиолетового излучения — выше 750000 гигагерц.
Световые волны в верхней части частотного диапазона обладают большей энергией, чем световые волны в нижней части диапазона.
26-1. Вопросы
1. Что такое свет?
2. В каком частотном диапазоне свет является видимым
для человеческого глаза?
3. Что такое инфракрасное излучение?
4. Что такое ультрафиолетовое излучение?
5. Какие световые волны обладают наибольшей энергией?
Фоторезистор — это старейшее из оптоэлектронных устройств. Его внутреннее сопротивление изменяется при изменении интенсивности света. Изменение сопротивления не пропорционально интенсивности света. Фотосопротивления изготовляют из светочувствительных материалов, таких как сульфид кадмия (CdS) или селенид кадмия (CdSe).
На рис. 26-1 показано типичное фотосопротивление.
Рис. 26-1. Фотосопротивление.
Светочувствительный материал нанесен на изолирующую
На рис. 26-2 показаны схематические обозначения фотосопротивления. Стрелки показывают, что это — светочувствительное устройство. Иногда для обозначения светочувствительного устройства используется греческая буква лямбда .
Рис. 26-2. Схематические обозначения фотосопротивления.
Фотосопротивления используются для измерения интенсивности света в фотографическом оборудовании, в охранных датчиках, в устройствах автоматического открывания дверей, в различном тестирующем оборудовании для измерения интенсивности света.
Фотогальванический элемент (солнечный элемент) преобразует световую энергию непосредственно в электрическую. Батареи солнечных элементов применяются главным образом для преобразования солнечной энергии в электрическую энергию.
Солнечный элемент — это устройство на основе р-n-перехода, выполненное из полупроводниковых материалов.
В большинстве случаев их делают из кремния. На рис. 26-3 показано устройство солнечного элемента.
Рис. 26-3. Устройство солнечного элемента.
Слои p– типа и n– типа образуют р-n– переход. Металлическая подложка и металлический контакт являются электрическими контактами. Они проектируются с большой площадью поверхности. Свет, попадая на поверхность солнечного элемента, передает большую часть своей энергии атомам полупроводникового материала. Световая энергия выбивает валентные электроны с их орбит, создавая свободные электроны.
Вблизи обедненного слоя электроны притягиваются материалом n– типа, создавая небольшое напряжение вдоль р-n– перехода. При увеличении интенсивности света это напряжение увеличивается. Однако не вся световая энергия, попадающая в солнечный элемент, создает свободные электроны. В действительности, при сравнении получаемой от него электрической мощности с мощностью падающей световой энергии легко увидеть, что солнечный элемент — это довольно неэффективное устройство с максимальным коэффициентом полезного действия порядка 15 %.