Чтение онлайн

на главную - закладки

Жанры

Введение в логику и научный метод
Шрифт:

Источник сложностей с инверсией теперь прояснен. Чтобы получить инверсивное суждение из суждения «все физики – математики», нам нужно обратить суждение «все не-математики являются не-физиками». Это возможно, только если мы добавим третью посылку: «Некоторые люди являются не-физиками». Если такая посылка имеется, то частично инверсивное суждение не нарушает принципа распределенности терминов.

Если бы общие суждения обладали экзистенциальной нагруженностью, то тогда не только термины подобных суждений обозначали бы непустые классы, но их обозначали бы и противоречивые термины. Так, если бы суждение «все люди смертны» требовало наличия людей и смертных существ, то, поскольку из него мы можем обоснованно вывести суждение

«все бессмертные являются не-людьми», нам бы пришлось утверждать и то, что существуют сущности, являющиеся бессмертными, и сущности, являющиеся не-людьми. Следующий пример призван продемонстрировать, что общие суждения не имеют экзистенциальной нагруженности даже в обычной разговорной речи. Студенты-математики знакомы с древнегреческой проблемой, заключающейся в том, что построить с помощью линейки и циркуля квадрат, площадь которого будет равна площади окружности, невозможно. Следовательно, мы можем с уверенностью утверждать суждение «ни один математик не построил круг, одинаковый по площади с квадратом». Частично инверсивным суждением относительно данного будет суждение «некоторые не-математики являются построившими круг, одинаковый по площади с квадратом». Однако мы, несомненно, не намеревались утверждать что-либо, приводящее к заключению о том, что существуют люди, которые на самом деле могут построить такой круг, поскольку существует доказательство, согласно которому подобное не может быть сделано. Следовательно, в исходном суждении не предполагалось утверждения существования таких людей.

Умозаключение посредством обратного отношения

Из суждения «Чикаго расположен к западу от Нью-Йорка» можно обоснованно вывести суждение «Нью-Йорк расположен к востоку от Чикаго», из суждения «Сократ был учителем Платона» – суждение «Платон был учеником Сократа», из «семь больше пяти» – «пять меньше семи». Каждая из приведенных пар суждений представляет два эквивалентных суждения. Такие умозаключения имеют следующую форму: если а находится к Ь в определенном отношении, Ь находится к а в обратном отношении.

Эквивалентность сложных суждений

На данном этапе нам предстоит изучить, что такое эквивалентные формы сложных суждений.

Рассмотрим условное суждение «если треугольник – равнобедренный, то углы у его основания равны». Утверждать это суждение, как мы уже знаем, означает утверждать, что истинность антецедента предполагает истинность консеквента, или что не может быть такого, чтобы антецедент был истинным, а консеквент – ложным. Следовательно, в данном условном суждении утверждается, что конъюнктивное суждение «треугольник является равнобедренным, и углы при его основании неравны» ложно. Или же, что строго дизъюнктивное суждение «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны» является истинным. Таким образом, из условного суждения мы можем вывести дизъюнкцию.

Более того, из строгой дизъюнкции мы также можем вывести условное суждение. Если дано суждение «неверно, что треугольник является равносторонним и вместе с этим углы у его основания неравны», то истинность одного дизъюнкта несовместима с истинностью другого: если один дизъюнкт истинен, другой должен быть ложным. Следовательно, из этого строго дизъюнктивного суждения мы можем вывести суждение «если треугольник является равнобедренным, то углы у его основания равны». Таким образом, может быть найдена строгая дизъюнкция, эквивалентная условному суждению.

Сказанное выше можно записать, используя введенные нами символы:

[(Треугольник является равнобедренным) (углы у его основания равны)] [(Треугольник является равнобедренным) .(углы у его основания равны)''

Из данного рассуждения также становится видно, как мы можем вывести эквивалентное условное суждение из любого другого условного суждения. Если в эквивалентной строгой дизъюнкции предполагается, что второй

дизъюнкт является истинным, то первый дизъюнкт должен быть ложным. Следовательно, мы можем вывести суждение «если углы у основания треугольника неравны, то треугольник не является равнобедренным». Мы можем записать:

[(Треугольник является равнобедренным) (углы у его основания равны)] [(Углы у основания треугольника равны)'(треугольник является равнобедренным)'.

Данные эквивалентные условные суждения считаются противопоставленными (контрапозитивными) друг другу.

Рассмотрим (нестрогую) дизъюнкцию «треугольник является равнобедренным или углы у его основания равны». Утверждать данное суждение значит утверждать, что, по крайней мере, один из дизъюнктов является истинным. Поэтому, если бы один из дизъюнктов был ложным, другой должен был бы быть истинным. Следовательно, мы можем заключить из данной дизъюнкции условное суждение «если треугольник является равнобедренным, то углы у его основания равны». Более того, данная дизъюнкция может быть выведена из данного условного суждения. Это условное суждение эквивалентно суждению «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны», в котором утверждается, что, по крайней мере, один из дизъюнктов должен быть ложным. Из данной дизъюнкции мы можем вывести суждение «треугольник не является равнобедренным или углы у его основания равны». Мы можем записать данную эквивалентность:

[(Треугольник является равнобедренным)' (углы у его основания равны)] [(Треугольник является равнобедренным) (углы у его основания равны)].

Из этого следует, что для любого условного суждения существует эквивалентное дизъюнктивное суждение, эквивалентное строго дизъюнктивное суждение, а также эквивалентное условное суждение. Похожее утверждение может быть сделано и относительно любого дизъюнктивного суждения и любого строго дизъюнктивного суждения. С другой стороны, конъюнкция не является эквивалентной ни одной из трех других форм сложных суждений.

Теперь приведем эквивалентные суждения для суждения «если он счастлив в браке, то он не бьет свою жену». Этими суждениями являются: «если он бьет свою жену, то он не является счастливым в браке», «он не является счастливым в браке или он не бьет свою жену» и «неверно, что он счастлив в браке и вместе с этим он бьет свою жену». В символьной записи данные суждения выглядят следующим образом:

[(Он счастлив в браке) (он не бьет свою жену)] [(Он не бьет свою жену)' (он счастлив в браке)' [(Он счастлив в браке)' (он не бьет свою жену)] [(Он счастлив в браке) . (он не бьет свою жену)']'

Данные эквивалентности можно выразить более компактно, а формы эквивалентных суждений – более ясно, если принять еще некоторые конвенции относительно символов. Пусть р означает антецедент условного суждения, a q – его консеквент. Любое условное суждение может быть формализовано как ( р q ). Данные эквивалентности тогда могут быть записаны следующим образом:

( р q ) ( q ' р ') ( р ' q ) ( p . q ')'

В главе VII мы рассмотрим эквивалентности между системами суждений. Однако на данном этапе можно предложить пример двух суждений, являющихся эквивалентными в силу своего места в определенной системе. Пусть р = «в физике Ньютона свет отражается от поверхности так, что угол падения равен углу отражения» и пусть q = «в физике Ньютона свет отражается от поверхности так, что его путь является минимальным». Суждения р и q эквивалентны.

§ 4. Традиционный квадрат противопоставлений

Поделиться:
Популярные книги

Моя на одну ночь

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
5.50
рейтинг книги
Моя на одну ночь

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Измена. Отбор для предателя

Лаврова Алиса
1. Отбор для предателя
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Отбор для предателя

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Часовая битва

Щерба Наталья Васильевна
6. Часодеи
Детские:
детская фантастика
9.38
рейтинг книги
Часовая битва

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

Хроники странного королевства. Вторжение. (Дилогия)

Панкеева Оксана Петровна
110. В одном томе
Фантастика:
фэнтези
9.38
рейтинг книги
Хроники странного королевства. Вторжение. (Дилогия)

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Очешуеть! Я - жена дракона?!

Амеличева Елена
Фантастика:
юмористическая фантастика
5.43
рейтинг книги
Очешуеть! Я - жена дракона?!

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9